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Abstract

In this paper, we analyze the statistics of two general classes of statistics. The first class is “M
quadratic and linear forms of correlated Gaussian random variables”. Examples include both cyclic
and non-cyclic autocorrelation function (ACF) estimates of a correlated Gaussian process or the
magnitude-squared of the output samples of a filtered Gaussian process. The second class consists
of a subset of order statistics together with a remainder term. An example is the largest M — 1 bins
of a discrete Fourier transform (DFT) or discrete wavelet transform (DWT), together with the sum
of the remaining energies, forming an M-dimensional statistic. Both classes of statistics are useful
in classification and detection of signals. In this paper, we solve for the joint probability density
functions (PDFs) of both classes. Using the PDF projection method, these results can be used to
transform the feature PDFs into the corresponding high-dimensional PDFs of the raw input data.

1 Introduction and Motivation

The so-called M-ary classification problem is that of assigning a multidimensional sample of data
x € RY to one of M classes. The statistical hypothesis that class j is true is denoted by Hj,
1 < j < M. The statistical characterization of x under each of the M hypotheses is described
completely by the joint PDFs, written p(x|H;), 1 < j < M. Classical theory applied to the problem
results in the so-called Bayes classifier, which simplifies to the Neyman-Pearson rule for equi-probable
prior probabilities, namely,

J* = argmax p(x|H;). (1)

Because this classifier attains the minimum probability of error of all possible classifiers, it is the basis
of most classifier designs. Unfortunately, it does not provide simple solutions to the dimensionality
problem that arises when the joint PDFs are unknown and must be estimated. The most common
solution is to reduce the dimension of the data, by extraction of a small number of information-bearing
features z = T'(x), and then re-casting the classification problem in terms of z:

j* = arg max p(z|Hj). (2)
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To be optimal, the feature-based classifier (2) requires that

p(x|H;) _ p(z|Hj) 3)

p(x|Hg)  p(z|H)
for any two classes j, k. Thus, the feature space z must optimally separate any pair of classes. This
requirement is only achieved in the simplest of problems. In trying to achieve (3), we encounter a
fundamental tradeoff - whether to discard features in an attempt to reduce the dimension to something
manageable - or to include them and suffer the problems associated with estimating a joint PDF with
high dimensionality. Unfortunately, there may be no acceptable solution where there is both adequate
information content in z and low enough dimension for robust PDF estimation. Virtually all methods
which attempt to find decision boundaries on a high-dimensional space are subject to this tradeoff
or “curse” of dimensionality. For this reason, many researchers have explored the possibility of using
class-specific features.

The basic idea in using class-specific features is to extract M class-specific feature sets, z; =
Tj(x), 1< j < M, where the dimension of each feature set is small, and then to arrive at a decision
rule based only upon functions of the lower-dimensional features. Unfortunately, the classifier modeled
on the Neyman-Pearson rule,

j* = arg max p(z;|Hj), (4)

is invalid because comparisons of densities on different feature spaces are meaningless. A number of
approaches have emerged in recent years to arrive at meaningful decision rules [1] [2] [3] [4] [5] [6]-
All these methods are based on strong assumptions, so are not general solutions. The class-specific
method [7], however, is an optimal classifier based on a sufficiency assumption much milder than the
standard feature-based classifier and is otherwise completely general. Provided a suitable reference
hypothesis Hy ; can be found for each class such that p(x|Hy ;) and p(z;|Hy ;) are both known, the
projected PDF of x may be constructed:

A p(x|Ho,j)
p(z;jHo ;)

According to the PDF projection theorem [7], [8], the function p(x|H;) is guaranteed to be a PDF,
and therefore is a PDF approximation to p(x|H;). Accordingly, the class-specific classifier

i p(zj|Ho,;)

p(x|H;) p(z;j|Hj). (5)

p(z;|Hj) (6)

can be constructed. The accuracy of the approximation depends only upon the statistical sufficiency of
the class-specific feature set z; in separating H; from Hy ;. More precicely, the class-specific classifier

requires for optimality that
p(x|Hj) _ p(z;|Hj;) (7)
p(x|Hoj)  p(zj|Ho,)
for each class j. Thus, the feature space z; must optimally separate a given class H; from the hand-
picked reference hypothesis Hy ;. This sufficiency requirement is far more manageable than (3) and
is helped by the fact that while {H,} are given and cannot be chosen, the class-dependent reference
hypotheses {Hy ;} can be individually chosen.
The success of the method depends on being able to calculate the “correction terms”

p(x|Hy )
p(zj|Ho ;)

Q(XaTja HO,j) é



which we call “Q” functions. The numerator is often quite easy to write down, but the denominator
is difficult to derive. That is the subject of this paper - the calculation of these denominator terms
under a special reference hypothesis - the white Gaussian noise (WGN) hypothessis. A wide variety
of solutions are already available where the standard normal distribution, or WGN hypothesis, is
used for the reference hypothesis [9]. These include cyclic cepstrum and autocorrelation estimates
from independent Gaussian noise samples. Through one-to-one transformation, these results can be
applied as well to linear prediction (LPC) and reflection coefficients. In this paper, we add solutions
for two new classes of statistics to those already available.

2 M Quadratic and Linear Forms of Correlated Random Variables

The second-order statistics of correlated Gaussian random variables (RVs) constitute an important set
of statistics. Examples include the ACF estimates of a correlated Gaussian process or the magnitude-
squared output samples of a linear filter. Applications exist in SONAR and RADAR detection and
estimation problems. Examples include both cyclic and non-cyclic ACF estimates of dependent Gaus-
sian noise samples.

2.1 Form of the statistics
The general form of the statistics of interest is
z=T(x)=[z 22...21],
where {z,,} are M quadratic forms,
Z2m = XPupX+pX+gm, 1<m< M, (8)
and x is the N-by-1 real input data vector
x=[z1 T2...2N],

{P,,} are M real symmetric! N-by-N matrices, {p,,} are N-by-1 vectors, and {g,,} are scalars.
The challenge is to determine the joint PDF of z under a specified Gaussian hypothesis, that is,

(2R, oy, {Pm }, {Pm ) {am}),
where N X 1 mean vector
E(x) = p,
and N x N covariance matrix

E((x — p)(x — p)) = Ry.

Example 1 Autocorrelation Function. An example of a class of statistics which are of the form
(8) are ACF estimates

1 N
= Y mimiy, 0<t<N-1L (9)
i=t+1

'There is no loss of generality in assuming {P,,} are symmetric, because any anti-symmetric component of {P,, } will
cancel out in the quadratic form.



Suppose we are interested only in a selected set of ACF samples at delays t1,ta...tp.

to obtain the joint PDF of the feature vector

zZ=1[ry Ty rtM]',

denoted by

Prias Tty -« Ttar; N, By Rar)-

The elements of z can be written as quadratic forms

!
zm = X Py, X,

where _
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The problem is

and so forth. The pattern is such that Py is nonzero only on the super- and sub-diagonals spaced k

away from the main diagonal.

If the sample mean is subtracted from x prior to calculation of the ACF estimates, the quadratic
forms (8) still hold, but the elements of {Py} are changed. For example, the j,k-th element of Py is
now 0 — 1/N instead of §;i, where ;1 is the Kronecker delta; the remaining matrices {Py} are more
complicated, but each element in the matrices can be evaluated by means of a single sum.

Equation (9) involves an aperiodic correlation of data x. The extension to cyclic correlation es-
timates can also be formulated in terms of quadratic forms by wrapping each of the diagonals. For

example, for N = 6, Py becomes

Py=

Cross-correlations

O = O OO

—_ o = O O O

1010
0101
0010
0001
10 00
0100
1<m<M

(11)



can also be written as (8) if we define
X = i
v

Example 2 Linear Filtering. Lety be an M-by-1 output vector from a linear filtering operation
y=Ax,

where A is an M-by-N filter matriz and x is a real N-by-1 input vector. Let z be the M-by-1 vector
of squared values of the elements of y. For example, let

az a1 ag 0 0 0
0 az a1 Qg 0 0
0 0 az a1 Q 0
0 0 0 a2 a1 ag

A= (12)

Then, we may write the elements of z as
zm=x AU, Ax, 1<m<M,
where Uy, is an M-by-M matriz of all zeros except a single one on the main diagonal in location
m,m.
2.2 Compression of Parameters

Note that there is no loss of generality in assuming that R; = Iy and g, = 0, where Iy is the N-by-N
identity matrix and 0 is the N-by-1 vector of zeros. This is because we can write

p(z; Ry, Uy, {Prg}a {Pm} {am}) =
p(2; 15,0, {Pp }, {Pm }; {Qm })s

where

P, = CP,,C,
Pm = Cpm+ QCPmHza

Gm = Gm+ Pty + MPmpy,
and C is the Cholesky decomposition of R ,

R,=C'C.

2.3 Saddlepoint Approximation

Since no closed-form expression for the joint PDF of z in (8) is known, we apply the Saddlepoint
approximation [10],[9]. To obtain the SPA, we need the joint cumulant generating function (CGF) of
z, namely,

cz(A) £ log g (),

where g, () is the joint moment-generating function (MGF) of z. Also, we need the first and second-
order partial derivatives of c,(\). Once these are known, the formulas in reference [9] may be used to
obtain the SPA.



It is shown in [11] that

e:(N) =~ og Q)] + 5t () Q M A)(A) + u(N), (13)
where
Q(A) =Ly - 2D(A),

with

M M

D(A) 2 Z AmPm,  t(A) 2 Z AmPm;

m=1 m=1

and

M
A
u(A) = Z Amlm -
m=1
The first-order partial derivatives are
7 c(A) = tr{Q 'Pp}+p,Q 't+t'B,Q 't

for 1 < m < M, and the second-order partial derivatives are
s ¢z(A) = 2tr{BBy} +p|Q 'pm
+2p/B,,Q 't +2p,,B,Q 't
+4t'B;B,, Q" 't

where

Bn(A) 2 Q '(A)Py,

and we drop the (A) dependence from t(A), Q~1(A), and By, (), for simplicity. The third and fourth
derivatives, necessary for the first-order correction term of the SPA have also been worked out [11].
The equations simplify considerably if we assume that {p,,} and {¢,,} are all zero. We then have

:(A) = logg:(A) = 3 log |Q(N)|. (14)
The first order partial derivatives reduce to
g (A = tr{Bn}
and the second order partial derivatives become

e ¢z(A) = 2tr {BBp}, 1<1l,m< M.
Example 3 Autocorrelation Function. We revisit example 1 and test the SPA for cyclic ACF
estimates against the SPA solution in [9]. We used the cyclic ACF (e.g. equation 10) with N = 32
and M = 3. The results are shown in Figure 1. The two methods agree very closely. The differences
are so small that they can be explained by differences in the stopping point of the iteration to find the
saddlepoint.
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Figure 1: Comparison of Saddlepoint Approximation from previous work (x-axis) with method of this
section for cyclic ACF estimates. The largest difference was .021

Example 4 Linear Filtering. We revisit ezample 2 and test the SPA solution against a Gaussian
mizture approximation. We used a filter length of 3 as shown in equation (12) and a feature size of
M = 3. The filter coefficients were a = [1 1 1]. A Gaussian mizture approzimation of p(z) under
the WGN assumption was obtained using 5000 samples and 20 mizture components. Next, 100 new
samples were generated and the log PDF from the SPA was compared with the mizture approrimation.

The results of the experiment are shown in Figure 2. On the graph, the dots represent the method
of this section compared with the Gaussian mizture. There is a positive bias of about .5 associated with
the SPA. This bias can be attributed to that fact that the statistics are highly non-Gaussian. There
are two things to note about this bias. First, the accuracy of the SPA depends only upon the shape of
the joint MGF in the vicinity of the saddlepoint, not upon its magnitude. Thus, the errors tend not
to increase as we go into the tails of the PDF. This is in constrast to the central-limit theorem (CLT)
approzimation which tends to have extremely large errors in the tails of the PDF. Second, the error
of .5 that we noted means an error of exp(.5) = 1.65, or a 65 percent error in the PDF wvalue. While
this may seems to be large, consider that this will be the error of the projected raw data PDF (using
equation 5), which is quite small for a high-dimensional PDF. When working with high-dimensional
PDFs, likelihood values vary over extremely wide ranges. PDF accuracy values are better thought of
in terms of the error in the log-PDF per dimension.

To test the hypothesis that this bias is associated with the shape of the MGF in the vicinity of the
saddlepoint, we implemented the first-order correction term. The first-order correction term involves
the third and fourth-order partial derivatives of the joint CGF and amounts to an additional term in
the Taylor series expansion which gives rise to the SPA. This term has been worked out by Nuttall for
the the statistics of general form (8) [11]. When the first-order correction term was added, the bias
disappeared (circles on the graph). Note that the first-order correction term is often computationally
impractical for large M. Since small bias in the SPA is not significant in the context of equation (5),
adding the correction term may not be worth the extra computational effort.
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Figure 2: Comparison of Saddlepoint Approximation from reference with a Gaussian mixture approx-
imation. Dots are without first-order correction term, circles with correction term.

3 Order Statistics with Residual Energy.

3.1 Features

Let x = [z122 ... zN] be a set of N independent random variables (RVs) distributed under hypothesis
H, according to the common PDF pg(z). The joint probability density function (PDF) of x is

N
p(x|Ho) = [] po(zi).
=1

Now let z; be ordered in decreasing order into the set y = [y192...yn] where y; > y;y1. We now
choose a set of M — 1 indexes t1,ty...tp_1, with 1 < #1 < to < ---tpy_1 < N to form a selected
collection of order statistics y;,, Y, - - - Yt,,_,- 1o this set, we add the residual “energy”,

r= > h(y)), (15)
JEM
where the set M are the integers from 1 to N not including the values ¢1,t5...%5, and h(z) is a
function which is needed to insure that r has units of energy. We than form the complete feature
vector of length M (M > 2):
z = [ytl yt2 - ‘th,1 Ir]l'

By appending the residual energy to the feature vector, we insure that z is a sufficient statistic for
unknown scale factors applied to x. We consider two important cases:

1. Let x be a set of magnitude-squared DFT bin outputs, which are exponentially distributed.
Since x is already in units of energy, h(z) = z.

2. Let x be a set of absolute values of zero-mean Gaussian RVs. Then, h(z) = z2.



3.2 Integral Solution
3.2.1 Probability Density Function

Interestingly, the joint PDF of z can be reduced to a single one-dimensional integral expression [12].
Define

cluN) = [ “oo po(z) exp(Mh(z)) dz (16)
e(u, ) = / ” polz) exp(\h(x)) do (17)
We find the joint PDF of z to be
p(z) = BE{IINT polem) }

/Ooo Re {exp [—(5\ + z'y)zM] I+ zy)} dy,

where
M—2

D2 (t, —1)! {H (tm+1—tm—1)!}(N—tM_1)!,

m=1

I()) = e(z1, N e(zar_r, )N -tv-1
{H%:_f [e(zm+1, /\) — e(zm’ )\)]tm+1—tm—1} .

3.2.2 Example 1

Let z, follow the standard exponential distribution po(z) = exp(—z) for z > 0. Let h(z) = z. Then,

for Re(\) < 1,
1 1
e(u, A) = ﬁ G(A_l)u for u > O, m for u < 0.
c(u,\) = 1 (1 - e()‘*l)“) for > 0; 0 for u <O0.
? 1 _ A ?

3.2.3 Example 2

Let x,, = |gn| where g,, follows the standard normal distribution N(0,1). Let h(z) = 2. Then, for
Re()) < 3,

e(u,\) = /u \/LQ—Wexp(—xQ/2) exp(\z?) dx

= \/%72)\ O(—uv/1—-2)) for u>0;

\/ﬁ for w < 0.
Also,
c(u, ) = % ')\1_2)‘) for v > 0; 0 for u < 0.



3.3 SPA Solution for Exponential RVs
We now consider the first case (exponential RVs) and apply the SPA. This will provide a means of

validating the integral solution of the previous section. As we explained in Section 2.3, to obtain the
SPA, we need the joint CGF and its first and second-order partial derivatives. Once these are known,
the formulas in reference [9] may be used to obtain the SPA.

3.3.1 Joint MGF of y.
We start with the joint MGF of y, which is (see [13], p. 68, eq. B-18)

go(on,an...ay) =

(1—a1) (1_01;‘12 ) (1_al+%2+a3)...(1_%)

for Re(a1) < 1, Re(a; + a2) < 2, ... , Re(a; + ag + -+ + an) < N. We can rewrite (18) as
1

HnN:1 ¢n(041,a2 . --CVN)’

go(ozl,ozg ...aN) =

where o
1
on(ai,a0...an) = 1——20@, 1<n<N.
ne=
Alternatively,
N
¢n(alaa2---aN) :1_2 Adnp Cp, 1<n <N,
p=1
where

L for 1<p<n
Gnp = ,n=12...N.
0 for n<p<N

Define the N-by-N matrix Q = [gnp] and & = [ ag -+ an]'. Then,

ng'(a)

where 1 is an N-by-1 column vector of ones. Thus, go(a) is the reciprocal of the product of the

elements of ¢(a), denoted by
1

go(a) = m,

where prod( ) is the product of the elements of the argument.

(19)

10



3.3.2 Joint MGF of z.
The joint MGF of z is, for A = [AMAa... A\y]',

9:(A) £ E{exp(Nz)}
= E {exp()\lytl + Xoys, + (20)

R AM—lth*I + )\MT)} :
This can be written
9:(A) = go(AX)
where A is the N-by-M matrix that has 1’s everywhere in the M-th column except for 0’s in rows
ti,ty...tm—1, and A has 1’s in row t1, column 1; row t9, column 2; etc. Therefore, from (19),

1
9:(A) = prod(1 — QAN)’

Note that Q can be a large N-by-N matrix if N is large. However, if we define
P 2 QA,

P is a reasonable N-by-M size matrix and can be easily formed directly. The final simplified form for

the joint MGF is
1

9:(A) = prod(1 — PA)’

3.3.3 Partial Derivatives of the CGF.

To obtain the SPA to the PDF of z, we need the joint cumulant generating function (CGF) c,(A) of
z and its partial derivatives. The joint CGF is defined by

¢-(A) = log(g:(X)) = —sum (log(L — PX))

where log is the vector log function which operates on each element of its argument and sum( ) is
the vector sum, which adds up all the elements of the argument. If we define ¢~1(\) as the element-
by-element reciprocal of 1 — P\, and ®(\) as the diagonal N-by-N matrix with elements equal to
the elements of 1 — P, it is straight-forward to show that the gradient vector of c,(\) is the M-by-1
vector

A 0 _p! 41
B2 T e =P ¢ (),
and the M-by-M Hessian matrix of c,(A) is
A 62 I &2

3.4 Comparison

A good check on the analysis is to compare the two methods just presented in Sections 3.3 and 3.2.
We tried the case of N =100, M = 3, t; = 3, to = 7. Samples of input data vector x were generated
using N independent uniformly distributed RVs (in the range 0 to 1), then scaled by a random scale
factor in the range 0 to 10. Note that the PDF used for data generation is not important because
we are comparing two PDF approximations for the same input feature vector. The PDF of z was
computed using the methods of Sections 3.3 and 3.2. The results are shown in Figure 3. The two
methods agreed very closely - within a maximum error of .059 in log space.

11
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Figure 3: Comparison of Saddlepoint Approximation (Section 3.3) with integral solution (Section 3.2).
Largest difference was .059

4

Conclusions

In this paper, we have derived saddlepoint approximations to the multidimensional PDFs for two
general classes of features. The availability of these PDFs permits these features to be used in a
class-specific classifier. The PDFs were checked using numerical simulations.
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