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Abstract

The chain-rule processor is a method of constructing an
optimal Bayes classifier from a bank of processors. Each
processor is a feature extractor designed to separate the
given class from a class-dependent reference hypothesis,
thereby avoiding the curse of dimensionality. This work
builds upon prior work in optimal classifier design using
class-specific features. The chain-rule processor is an im-
provement that recursively applies the PDF projection the-
orem.

1 Introduction

The so-called M -ary classification problem is that of as-
signing a multidimensional sample of data x € R* to one
of M classes. The statistical hypothesis that class j is true
is denoted by H;, 1 < j < M. The statistical characteriza-
tion of x under each of the M hypotheses is described com-
pletely by the probability density functions (PDFs), written
p(x|H;), 1 < j < M. Unfortunately, the PDFs are of-
ten unknown in many problems and must be approximated
from training data.

The high dimension of the raw data usually precludes
estimating the PDFs without knowing the parametric form
beforehand. Because the classical theory does not offer any
solutions to this problem, many practitioners are forced to
extract a set of information-bearing features of lower di-
mension from the raw data, then abandon the raw data alto-
gether by recasting the problem as though the features were
the raw data. We contend that in problems of high com-
plexity, this drastic step unnecessary. In problems of high
complexity, where there are many statistical hypotheses, the
dimension of the feature space that has enough information
to optimally separate all the classes grows with the number
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of classes. But with a fixed amount of training data, the
PDF of the features can be difficult to estimate above a very
small dimension (usually about 5). Therefore, classifier per-
formance can be severely limited either because of insuffi-
cient information in a low-dimensional feature set, or by
unreliable PDF estimation at high dimensions. The root of
the problem is that we seek a common feature space where
all classes are separable. Any feature that has information
pertaining to just one or two classes must be thrown into
the common feature set regardless of whether it is informa-
tive about any other classes. The added feature dimensions
are often completely irrelevant to some of the classes, yet
these dimensions must be estimated under all hypotheses -
and this can lead to very poor PDF estimation. Fortunately,
there is a theoretical solution to this dilemma, which we
now present.

2 The PDF Projection Theorem

In this section, we describe the theorem that makes the
class-specific method possible. In Section 3, we use the
theorem to construct a classifier.

2.1 Summary of the Theorem

For those readers who would like to skip most of this
section, we summarize the main result as follows. The PDF
projection has nothing to do with linear or nonlinear pro-
jection from high-dimensions to low dimensions. Instead,
it has to do with estimating the PDF of a select set of fea-
tures - only the relevant features necessary to characterize
a given class - then projecting the PDF of the low dimen-
sional features back to the high dimensional input raw data
space. That is, constructing a function of the raw data from
the feature PDF that not only is a PDF so it integrates to 1 on
the raw data space, but is also a good approximation to the
desired class PDF. This completely eliminates the need to
construct decision boundaries in a feature space and makes
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possible direct implementation of the optimal Bayes classi-
fier on the raw data space. Let H; be any data class hypoth-
esis. Let z; = T7(x) be a set of features that describes class
H; - such as parameter estimates of the relevant parameters
that govern the data for that class. Then, the projection op-
eration is written

ﬁw(x|H1) = Q(XaTluHO) ﬁz(z1|H1) (1)

where p,(z1|H) is the estimated low-dimensional feature
PDF of z; and p,(x|H) is the projected PDF defined on
the raw input data space - such as raw time-series of raw
image pixel data - not features. The projection or “Q” func-

tion (x| Ho)
PX|i19

Q(x, Ty, Hy) (72 | Ho) 2
is the ratio of the PDF at the input and output of the fea-
ture transformation under some reference hypothesis H. It
is determined exactly from the feature transformation and
does not depend on training data, thus does not suffer from
dimensionality issues. The method requires that the feature
transformations are known and needs access to the raw data
in order to compute equation (2). Thus, it cannot be viewed
as another method of constructing decision functions on a
given feature space.

2.2 Statement of Theorem

It is well known how to write the PDF of x from the PDF
of z when the transformation is 1:1. This is the change of
variables theorem from basic probability. Let z = T'(x),
where T'(x) is an invertable and differentiable multidimen-
sional transformation. Then,

pe(x) = [J(x)| p(T (%)), ©)

where |J(x)| is the determinant of the Jacobian matrix of
the transformation

B 6:13j-

What we seek is a generalization of (3) which is valid for
many-to-1 transformations. Define

F(T, f2) ={fe(x) : 2="T(x) and z ~ f.(2)},

that is, F(T, f,) is the set of PDFs f,(x) such that if
z = T(x), then z has PDF f,(z). If T'( ) is many-to-
one, F(T, f,) will contain an infinite number of members.
Therefore, it is impossible to uniquely determine f,(x)
from T'( ) and f,(z). We can, however, find a particular
solution if we constraint f,(x). The applicable constraint is

that
fo(x) _ f:(z)
pz(x[Ho)  p:(z|Ho)’

“

or that the likelihood ratio (with respect to Hy) is the same
in both the raw data and feature domains for some pre-
determined reference hypothesis Hy. We will soon show
that this constraint produces desirable properties. The par-
ticular form of f,(x) is uniquely defined by the constraint
itself, namely

_ P=(x|Ho)
p=(2|Ho)

Theorem 1 proves that (5) is, indeed, a PDF.

fw(x) fz(z)§ at z ZT(X). (5)

Theorem 1 (PDF Projection Theorem). Let Hy be some
fixed reference hypothesis with known PDF p,(x|Hp). Let
X be the region of support of p,(x|Hp). In other words X
is the set of all points x where p,,(x|Hp) > 0. Let z = T'(x)
be a continuous many-to-one transformation (the continuity
requirement may be overly restrictive). Let Z be the image
of X under the transformation T'(x). Let p,(z|Hy) be the
PDF of z when x is drawn from p,(x|Hg). It follows that
px(z|Ho) > 0 forall z € Z. Now, let f,(z) be a any other
PDF with the same region of support Z. Then the function
(5) is a PDF on X, thus

Lgn®w=L

Furthermore, f,(x) is a member of F(T, [,).
Proof: These assertions are proved in a prior publication

[11,[2].
2.3 Optimality Conditions

While it is interesting that f,(x) is a PDF, it is not yet
clear that f,(x) is the best choice. We generally we would
like to use f,(x) as an approximation to the PDF p, (x| H1).
Define

a Dz (XlHO)
p=(z|Ho)
From Theorem 1, we see that (6) is a PDF. Furthermore,

if T'(x) is a sufficient statistic for H; vs Hy, then as
D (z|Hy) = p.(z|H;), we have

P (x| Hy) py(z|H1) at z=T(x). (6)

Dy (X|H1) = po(x|Hy).

This situation produces an optimal classifier if it can be
achieved for all classes. If the reader can excuse the mis-
use of the terms optimal and sufficient, if sufficiency is ap-
proximate, it produces a classifier that is approximately op-
timal. This is because the PDF projection operator produces
a valid PDF regardless of sufficiency.

Theorem 1 allows maximum likelihood (ML) methods
to be used in the raw data space to optimize the accuracy of
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the approximation. Let p,(z|H;) be parameterized by the
parameter 8. Then, the maximization

{IM

max
pz(Z|H0)

P-(z|H1;6) }
0,1,H,
is a valid ML approach and can be used for model selection
(with appropriate data cross-validation).

2.4 Reference Hypotheses and Calculation of “Q"
function

One of the issues in constructing the “Q” function (2)
is that it must be possible to calculate both the numera-
tor and denominator for any value of x or z;. Problems
arise especially in the PDF tails. For many feature transfor-
mations, where the numerator and denominator PDFs may
be derived analytically, tail behavior is not a problem. For
still more feature transformations, the PDFs may be accu-
rately analyzed in the tails using the saddlepoint approxi-
mation [3] or analyzed using asymptotic CR bound analy-
sis. Subject to certain requirements, the reference hypoth-
esis Hy can vary on-the-fly to match the input data sample
as well as possible. This helps produce simpler and better-
conditioned expressions for the numerator and denomina-
tor of the Q-function and allows reduction of feature di-
mension. A special case of variable reference hypothesis is
when the features are maximum likelihood (ML) estimates.
The Q-function can be derived from the Cramer-Rao lower
bound. For more information on these issues, the reader is
referred to the website [6].

2.5 The Chain Rule

In many cases, it is difficult to derive the ratio
p(x|Ho) /p(z1|Hp) for an entire processing chain. On the
other hand, it may be quite easy to do it for one stage of
processing at a time. This is especially true because up-
front processing is usually simpler - FFT, wavelets, etc - and
yields well to analysis. Another advantage of breaking the
processing into stages is to take advantage of redundancy in
the up-stream processing. The chain rule is just the recur-
sive application of the PDF projection theorem. Consider a
processing chain:

Tl_(;C) Ta(y) _ Ts(w)

X y =3'w =z @)

By applying (6) to the first stage, we obtain

pw(X|H0)

pe(x|Hy) = py(ylHO)

py(y|Hy). ®)

If this process is continued recursively to expand the last
term each time, we obtain

po(x|Ho) py(y|Hp)
py(y[Ho) pw(w[H))

pw (W HII)

“p.(a[HY) P*

pe(x|H1) =

©))
(z|H1)

where Hy, Hjj, Hjj are reference hypotheses suited to each
stage in the processing chain.

There is a special embedded relationship between these
hypotheses. Let H, be the region of sufficiency (ROS) for
¥, the set of all hypotheses for which y is a sufficient statis-
tic . Let H,, and H, be similarly defined for w and z.
Because information is lost at each stage in the chain, the
region of sufficiency shrinks each time. Thus, we have
‘H. € Hw € Hy. For optimality of the classifier, we also
require Hy € H,, H{ € H., H) € Hy, Ho € Hy.
The factorization (9) together with the embedding of the hy-
potheses we call the chain-rule processor (CRP).

3 Building a Classifier
3.1 Extending to M Classes

We now consider the M-ary classification problem. If we
adapt equations (1), (2) for multiple classes as follows. Let

p(x|Hj;) = Q(x,Tj, Ho,j) p(z;|Hj), (10)

where z; = T;(x) is a class-specific feature set for class
Jj and p(z;|H;) is its PDF under class H;. Notice that the
“Q”-function uses a class-dependent reference hypothesis -
there is no need to make it common. As we have stated,
P(x|H;) so defined is always a PDF (it integrates to 1 on
x) and it is a member of of F (T, f,). The result is the
class-specific Neyman Pearson classifier

Jjt= argmeQj(x,Tj,Ho,j) p(z;|H;). (1D

Notice that the Q-function is a function of x that depends
only on the transformation T'; (x) and the reference hypoth-
esis Ho j, so it may be determined a priori without train-
ing. Q;(x,Tj,Hoy,) is the correct way to compensate the
likelihoods in a class-specific classifier. The ability of the
Q-function to provide a “peak” at the “correct” feature set
gives the classifier a measure of classification performance
without needing to train. In some applications, the PDF of
the features is not even needed - the Q-function does all the
work.

'We mean that for a binary test between any pair of hypotheses in the
set, the feature is a sufficient statistic.
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3.2 Class-Specific Modules

The derivation of Q-functions for a particular feature
transformation is something that needs to be done only
once. Once complete, the Q-function calculation can be
bundled together with the feature calculation to arrive at a
software package called a class-specific “module”. Capi-
talizing on the chain-rule, the designer of a class-specific
classifier can draw from a library of modules which can be
connected together into “chains” to form each arm of a clas-
sifier. All probabilities are represented in the log-domain,
so the log-Q functions are added together. At the end of the
chain, the aggregate log-Q function is added to the log-PDF
of the features. Q-functions have been derived for many
features useful in speech analysis, time-series analysis, and
general classification. As time goes on, more feature sets
become available.

4 Example

The class-specific method is not an algorithm like a neu-
ral network that can be applied to an existing set of features
and compared with dozens of existing algorithms. Com-
parison with traditional feature-based classifiers on open
databases is problematic for several reasons. First, it is a
method that requires defining its own features and requires
access to the raw data. Second, it is highly dependent on the
choices that are made in design including features and ref-
erence hypotheses. The closest thing to a “fair” comparison
would be to develop class-specific features, then collect all
the features from all the classes into one set and offer this to
the conventional classifier. Such an experiment is available
[4] and shows that the conventional classifier requires two
orders of magnitude (more than 100 times) more training
data to reach the same maximum performance level.

To illustrate the design of chain-rule processors, we
develop the Q-function for the autocorrelation function
(ACF). Let

Z = [fo,fl . .T’AP]I,
where P is the order of the desired autoregressive (AR) pro-
cess and the circular autocorrelation samples are

1 N
Ty = N z_; Ti Tlite]s

where [i + ¢] means (¢ + t) modulo-N. Note that z is re-
lated by a 1:1 transformation to linear prediction (LPC) co-
efficients or reflection coefficients (RC) [5],[3], and is ex-
tremely useful for time-series analysis and spectral analy-
sis. It is easily shown that an alternative way to compute 7
is as follows:

L N2
P = N2 l;)ek yr cos(2wkt/N),

where e, = 2fork =1,2...N/2—1and 1 otherwise, and
where y;, are the DFT magnitude-square bins

N 2
Y = anexp(—ﬂwnk‘/N) . (12)

n=1

This can be written as the matrix equation
z=C'y, 13)

where the definitions of y and C are obvious. Thus, we
can break the ACF calculation into two stages : DFT (12),
followed by linear transformation (13).

4.1 Stagel

In the first stage, we compute the DFT (12). For our
reference hypothesis for this stage, we use Hy, the standard
normal density (WGN hypothesis with unit variance). We
have

N
pe(x|Hp) = (27) V2 exp {—% wa} . (14)
i=1

Note that under Hy, y is a set of independent RVs. It is eas-
ily shown that yo, 4,2 obey the x*(1) density with mean
N and variance 2N 2. Also, y; - “Yn/2—1 obey the expo-
nential density with mean N and variance N 2. Thus,

N/2
p(y|Ho) = [ plvilHo), (15)
i=0

where

(N .
p(y,|H0)— N\/ﬁ exp{_2N} /L—O,N/2a
(16)

and

Yi

1
p(yi|Ho) = — exp {—N

~ } 1<i<N/2-1. (17)

4.2 Stage 2

In stage 2, we compute (13) and use a variable reference
hypothesis Hyg. We let Hy be the hypothesis that y obeys
the AR spectrum corresponding to z. Thus, we must use
the Levinson algorithm to solve for the P-th order AR co-
efficients 02, a*. Let A*(k) be the DFT of a® (padded to
length N), then

i

PO = wwe

is the AR spectrum corresponding to a*, o2. We let

y* 2 [P*(0)... P*(N/2)]' (18)
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We need to evaluate py(y|Ho) and p.(z|Hp). We as-
sume that under Hy, {y;} are a set of independent expo-
nential and x? RVs with means corresponding to {y?}, the
elements of y*. Specifically,

1 Yi
NH) = .?—1/2ex{_’}, 19
fori =0,N/2, and and
Yi
Ty

K3

1 .
py(yilHo) = " eXp{ } , 1<i<N/2-1. (20)
i

Because Hy is “close” to z, we approximate p,(z|Hp)
by the central limit theorem (CLT). Under H y, the elements
of y are independent with mean y * and diagonal covariance
EZ

y7

2(yz'z)2a Z:07‘2\7/2

(Wi )?,

We can then easily compute the mean and covariance of z:

32 (i,4) =
1<i<N/2-1

z® = &(z|Hy) = C' y?,
and
»:=C 3; C.

_(P+1)

p-(z[Ho) = (2m)~ = |det(3%)["/2

e~ % (2=20:)(31) 7" (2—%0:) (21)

~ (2m)~ 5 [det(Z2)[1/2
where in the last step, we make the approximation z* ~ z.
This approximation becomes better as N becomes larger.
Note also that the method just described is closely related to
the ML approach. In fact, 3% can be related to the Fisher’s
information of the ACF estimates [5].

4.3 Validation

It is always important to validate the Q-function before
implementation of the classifier. To this purpose, we have
developed a method for end-to-end testing of a chain-rule
processor [6]. However, because the current example has
been analyzed through a different approach, it is possible
to compare the results. Direct implementation of the Q-
function without breaking into two stages is possible if we
can compute the PDF p(z|Hy). This density has been pub-
lished [3]. We compared the two methods in a simulation.
We created data using an AR(4) model. AR coefficients
were randomly created in each trial by choosing the reflec-
tion coefficients uniformly in the range [-1,1], then trans-
forming into AR coefficients. Although there is insufficient

space for a graph, the log-Q functions of the two methods
track very closely across a wide range. The maximum dif-
ference did not exceed 0.5 in the log space although the val-
ues were spread across a range of more than 300, a factor of
€300, This wide range is due to the fact that samples are in
the far tails of p(z|Ho).

5 Conclusions

The PDF projection theorem makes it possible to ap-
ply the classical theory of hypothesis testing in problems
where PDFs must be approximated from training data. It
allows the PDF approximation to be carried out in a class-
specific low-dimensional feature space, while the likelihood
comparisons can be made in the common raw data space.
Doing this avoids the curse of dimensionality if the class-
dependent features are each of low dimension. The theorem
requires that the statistics of the input and output data of the
transformation be known for a particular class-dependent
reference hypothesis. The chain-rule is the recursive appli-
cation of the PDF projection theorem. The resulting archi-
tecture, called the chain-rule processor, facilitates the anal-
ysis of complex chains of transformations. The ability to
change the reference hypothesis “on the fly” further facili-
tates the analysis. The analysis of a chain which computes
the autocorrelation function was demonstrated. More exam-
ples and documentation may be found on the website [6].
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