The PDF Projection Theorem and the
Class-Specific Method: Signal Processing and
Classification Unified

Dr. Paul M. Baggenstoss *
Naval Undersea Warfare Center
Newport RI, 02841
401-832-8240 (TEL)
p.m.baggenstoss@ieee.org (EMAIL)

October 21, 2001

!This work supported by Office of Naval Research

Chapter 1

Classical Classification
Theory

1.1 The Classification Problem

1.1.1 Definition and Notation

The so-called M-ary classification problem is that of assigning a multidimen-
sional sample of data x € R to one of M possible classes. The statistical
hypothesis that class H; is true is denoted by Hj, 1 < 3 < M. The statistical
characterization of x under each of the M hypotheses is described completely
by the probability density functions (PDFs), written p(x|H;), 1 < j < M.
We assume that the PDF's are either known or can be approximated from
training data. The PDF is alternatively known as the likelihood function
(LF).

1.1.2 Simple vs. Complex Problems

Many problems of interest are inherently simple. In communications and
detection of known signals, the number of free variables (parameters) to be
estimated such as signal amplitude, phase, and arrival time, can be quite
small or low-dimensional. In contrast, complex problems are characterized
by large numbers of unknown parameters. A hypothetical complex problem,
which we will refer to later, is to place a microphone at a street corner in
a busy city and attempt to classify all the sounds that are detected. The
problem of classifying all the possible sounds is complex or high-dimensional.
This is because the data does not follow simple rules. Rather, it is highly
variable and may take many different forms. Correspondingly, the amount

3

4 CHAPTER 1. CLASSICAL CLASSIFICATION THEORY

of information that needs to be extracted from the raw data to adequately
classify all signal types is huge. Many problems appear to be simple but are
in fact complex. In active sonar, the reflected transmit waveform is known
in principle except for arrival time and amplitude. But, in fact, there is
usually significant and unpredictable distortion caused by the environment
or a large number of reflections from environmental boundaries such as rocks,
shorelines, and the sea bottom.

We argue that classical decision theory, which we outline shortly, does
not provide useful solutions to complex problems. Instead, it forces practi-
tioners into losing fight with dimensionality. In the absence of guidance from
theory, practitioners embrace what we call the common feature paradigm
(CFP). Solutions to complex problems based on the CFP are almost uni-
versally doomed to a poor performance compared with the power of human
observation. For example, consider again the “busy street corner” scenario.
A human listener can hear a sound, such as car door slam, once or twice,
then later accurately classify the sound against alternative sounds of a huge
variety without error. Classifiers based on the CFP, even if trained with
huge amounts of training data, still cannot offer comparable performance.

1.2 The Neyman-Pearson Classifier

The so-called Bayes classifier assigns sample x to the class H; which maxi-
mizes the probability of a given class given the data:

arg m]axp(HjIX) = argmax p(Hj) p(x|Hj),

where p(H;) is the a priori class probability that the sample was from class
Hj, and p(x|H;) is the likelihood function (LF). The LF is exactly the same
as the PDF, however it is called a LF when used in this manner. We will use
the terms interchangeably. This classifier attains the minimum probability
of error. Without loss of generality, we will assume from hence forth that
the M classes are equally likely, or that p(H;) = p(Hz) = ---p(Hp) = 1/M.
Then, the classifier reduces to the Neyman-Pearson classifier

argmax p(x|Hj). (1.1)
J

This classifier is simple and elegant: it simply selects the class which attains
the highest likelihood. Unfortunately, the PDFs are rarely known in complex
problems. Therefore, the LF's must be estimated and herein lies the problem.

1.3. PDF ESTIMATION 9

1.3 PDF estimation

In well-defined problems such as simple detection or pattern matching prob-
lems involving known signal waveforms or patterns imbedded in known addi-
tive noise, the LFs are known functions of a few unknown parameters. These
parameters can be obtained by maximizing the LFs over the unknown pa-
rameters to obtain the maximum likelihood (ML) parameter estimates. Or,
if the data depends linearly on the unknown parameters, optimal proces-
sors can be reduced to simple correlators or detectors [1], [2] which will
have optimal performance under ideal conditions, and good or acceptable
performance under less-than ideal conditions. Unfortunately, in complex
real-world problems, the classes are natural disturbances or patterns which
are either unknown or do not obey statistical models that can be easily
described. Examples are human speech and computer vision involving nat-
ural subjects. In the “busy street corner” scenario, consider the problem
of writing the LF for the sound of a ”car door slam” in closed form! As
a result of these difficulties, the LFs have traditionally had to be learned
from data samples (training data). Areas of study which have LF learn-
ing (or PDF estimation) as a foundation include Pattern Analysis, Neural
Networks, Computer Vision, and Speech Recognition. Likelihood function
(or PDF) estimation is an extremely important, yet difficult problem. The
difficulty lies in what is often called the curse of dimensionality.

1.4 Feature Extraction

Estimating the PDF of the raw data is practically impossible when the data
has a high dimension. To improve the situation, practitioners process the
raw data to extract a lower-dimensional set of information-bearing features,

z =T(x),

where z € RP, where P is the feature dimension. The raw data is then
discarded and the classifier based on the features becomes:

arg max p(z|Hj). (1.2)

Thus, the features replace the raw data - in effect, they become the raw
data. This is what I call “burning the bridges”. The act of discarding
the raw data in favor of a lower-dimensional feature set makes the implicit
assumption that all of the classes are optimally “separable” in the feature
space. This is the common feature paradigm which we talk about in more
detail later.

6 CHAPTER 1. CLASSICAL CLASSIFICATION THEORY

1.5 The Curse of Dimensionality

Conceptually, estimating PDFs is simple. The most basic method of PDF
estimation is the histogram, which learns the PDF by mapping the fea-
ture space to a grid and counting the number of occurrences in each grid
cell. The difficulty in PDF estimation is that as the dimension of the data
increases, the complexity of the problem increases exponentially - the num-
ber of histogram grid cells increases exponentially. This effect cannot be
avoided, even by other PDF estimation methods. Indeed, it has been shown
that given that the PDF meets certain smoothness assumptions, the amount
of training data required for nonparametric estimators rises exponentially
with the dimension [3]. The rapid increase in complexity of systems has
been termed the curse of dimensionality by Richard Bellman [4]. As the
dimension of z increases, so does the amount of information available. But,
it is possible that algorithm performance may actually get worse in spite of
increased information content. The success of some very high-dimensional
PDF estimators may appear to contradict this assessment, however such
success is indicative of the inherent separability of the data classes in the
high-dimensional feature space, not a testament to the accuracy of the PDF
estimates. Indeed, when good separability exists, most high-dimensional
methods can obtain satisfactory decision boundaries. The problem is that
the performance is limited because they cannot optimally decide between
“similar” hypotheses. The optimal decision is based on the PDFs which
simply cannot be learned at such high dimensions.

The “curse of dimensionality”, if not descriptive, is an appropriate term.
Calling it the “problem of dimensionality” would gives us false hope because
“problems” can be solved. Perhaps a more descriptive term would be The
Fundamental Tradeoff. As more features are extracted from the raw data,
the dimension of the features vector increases and the information content
increases - but the ability to estimate the PDF collapses. The trade-off is
to increase information content at the cost of worsening PDF accuracy, or
increased PDF accuracy at the cost of inadequate information content. In
the common feature paradigm, there may be no place in the middle where
both information content and PDF accuracy are acceptable.

1.6 Limitations of the Classical Theory

The classification practitioner has no where to turn if he wants to find the-
oretical solutions to attaining the promised performance of the Neyman-

1.6. LIMITATIONS OF THE CLASSICAL THEORY 7

Pearson classifier (or, for that matter the human observer) in high-
dimensional problems. More than sixty years has passed since the foun-
dation of this classical decision theory, yet even today, it remains the basis
of virtually all probabilistic classifiers. The approach is simple and logical:
the classical theory suggests equation (1.1), yet dimensionality requires x
to be low in dimension. The only way to apply the classical solution is to
reduce the dimension of x by feature transformation. Accordingly, virtually
all existing classification methods are based on the two-step procedure:

1. Transforming the raw data to a lower-dimensional set of information-
bearing features,
z =T(x)

2. Re-formulating the problem with the features z replacing the raw data
using equation (1.2).

An additional intermediate stage of dimension reduction is often applied
in an attempt to reduce the dimension of z by methods such as feature
selection, principal component analysis, etc. In fact, dimension reduction
is the subject of much research currently and over the past decades (some
good overviews are available [5], [6], [7]). While many people believe that the
underlying mechanism in most data sources is inherently low dimensional
(dependent on a relatively small number of parameters), projecting the data
to a low-dimensional feature space is not so easy. Linear subspace methods
(singular value decomposition or SVD) only works if the classes occupy linear
subspaces of the feature space.

As luck would have it, the relationships between the features is rarely
linear. Finding a low-dimensional transformation often requires knowing
the nature or structure of the mechanism. A fascinating Catch-22 results.
Knowing the structure effectively requires knowing something about the
PDF, yet learning the PDF requires first knowing the structure.

A visual example is a 2-dimensional plane in which one data class is
distributed in a ring enclosing the samples of a second data class. Any
attempt to project the samples to a lower-dimensional space (a line) will fail
to preserve the class separation. Only a non-linear transformation (i.e. to
polar coordinates) resolves the classes. Unfortunately, the correct non-linear
transformation cannot be easily discovered at high dimension, such as in the
simple example just described.

This frustrating dilemma has given rise to a seemingly infinite number
of ingenious methods, each based on its own implicit assumptions. Various
approaches include feature selection [8], [7], [5], projection pursuit [9], [10],

8 CHAPTER 1. CLASSICAL CLASSIFICATION THEORY

Figure 1.1: Example of how mapping the class distributions to a lower-
dimensional subspace can fail to retain class separation.

and independence grouping [11]. Several other methods are based on pro-
jection of the feature vectors onto lower dimensional linear subspaces [12],
[13], [14], [15]. In all of these methods, there is an implicit approximation
which limits the theoretical performance.

What we have just described is the common feature paradigm (CFP). It
is a flawed paradigm because it often seeks something which does not exist:
a low-dimensional common feature space in which the problem is separable.
By recasting the problem in terms of the common feature space, it is doomed
to poor performance. Note that the drastic step of discarding the raw data
carries an important implication. It implies that the z is a sufficient statistic
for the classification problem. In particular, that

po(x|H;) _ (2| Hj)
pe(x|Hy) p.(z|Hy)’

Thus, the feature set z must be statistically sufficient to distinguish any
pair of classes. In complex problems, realization of this requirement is only
a dream. Once the common feature paradigm is embraced, no matter what
effort is put into feature extraction, no matter what effort is put into dimen-
sion reduction, the game is already lost at the start.

Humans can’t be operating in this way. Humans don’t collect the same
information from all classes. A human does not “listen” to a bird chirping

1<jk<M, j#k (1.3)

1.6. LIMITATIONS OF THE CLASSICAL THEORY 9

in the same way he listens to a human voice.

Most of the work in the last decades in classification has not been di-
rected toward extending the classical theory. Rather, the great majority of
classification methods are directed toward finding a better trade-off by find-
ing ways to concentrate all the relevant information contained in the data
into a handful of features. The classical theory of hypothesis testing does
not provide a satisfactory solution to complex problems. The class-specific
method provides an extension to the classical theory that can deal with
complex problems.

10

CHAPTER 1.

CLASSICAL CLASSIFICATION THEORY

Chapter 2

The Type 1 Class-Specific
Classifier

2.1 Introduction

As we have explained, the classical approach to classification, as imple-
mented using features in place of the raw data (common feature paradigm)
seeks to determine decision boundaries in a common feature space:

arg max p(z|H;),
J

where z = T'(x). As we have previously argued, since the feature space
is common, it must be high-dimensional in complex problems. Due to the
curse of dimensionality, using a feature set which contains adequate informa-
tion for separation of the classes may preclude satisfactory PDF estimation.
Thus, adequate performance can never be achieved using this paradigm.

In contrast, the class-specific classifier implements the classical classifier
without resorting to using a common feature set. We discuss two architec-
tures for a class-specific classifier, differentiated by the choice of reference
hypotheses. In this chapter, we introduce the original form of the class-
specific classifier.

2.2 Definition

The class-specific classifier of Type I [19] is based on the invariance of the
likelihood ratio when written in terms of sufficient statistics. In many prob-
lems, it makes sense to define a common or noise only class, denoted by

11

12 CHAPTER 2. THE TYPE 1 CLASS-SPECIFIC CLASSIFIER

Hj. In detecting and classifying signals in noise, the noise-only condition
is a natural common reference hypothesis. In fault localization, the normal
state is a natural reference hypothesis. The Neyman-Pearson classifier (1.1)
is divided through by the constant p,(x|Hy), we have the classifier based on

likelihood ratios:

arg max pil‘ (X|HJ) .
i pe(x|Ho)
It is then possible to take advantage of the invariance of the likelihood ratio

for sufficient statistics. Specifically, if features z; = Tj(x) are statistically
sufficient for the binary hypothesis test H; vs. Hy, for 1 < j < M, then

p(x|H;) p(z;|Hj)

(2.1)

= . 2.2
P ~ plas o) &2
Then, we have
p(z;|Hj)

p(x|H;) = p(x|Hy) —/=+- 2.3

The class-specific classifier of Type I results:

p(z;|Hj) p(z;|Hj)

arg max p(x|Hy)————=+ = arg max —————. 2.4
8P HO) o H0) = 85 (ol Hy) 24

Notice that all M feature sets are used, however a given feature set is only
used when testing the corresponding hypothesis. Thus, the PDF of a fea-
ture set needs only to be known under Hy and under the corresponding
hypothesis.

2.3 Prior Work

It has been recognized for some time [16] that the M-ary classifier (1.1) could
be constructed by knowing only the likelihood ratios

pz(x|H2) po(x|Hs) pa(x[Hum)
po(x|H1)" po(x|H1) po(x[H1)

Thus, these likelihood ratios were sufficient. Van Trees recognized [1] that an
additional class, Hy, the “dummy” class, could be used in the denominator
and the Bayes classifier could be implemented by comparing the likelihood

ratios I
arg max Pz (x|H;)

: r(x\ﬂo)' (2.5)

2.4. THE SUFFICIENCY REQUIREMENT 13

But these results were of little use unless an algebraic simplification of the
likelihood ratios could be made, and this required complete knowledge of
the PDFs and that the PDF's were relatively uncomplicated. The Neyman-
Fisher factorization theorem [17], [18], which was also known for a long time,
states that if a statistic z = T'(x) is sufficient for p,(x|H;), j = 0,1, the PDF
factors as
p=(x|Hj) = g(T(x)|Hj) h(x), j=0,1.

Thus, all the dependence of p,(x) on the hypothesis is expressed by some
function of T'(x) and another term independent on the hypothesis. The well-
known implication of this theorm is that any likelihood ratio is invariant
when written in terms of a sufficient statistic (SS). Thus, if z is a SS,

pe(x|Hj) _ p.(z|Hj)
p=(x|Ho) pz(z|Ho)
The class-specific method [19],[20] combines the two results expressed by

equations (2.5), (2.6). The direct consequence of these results is that we
may write the Bayes classifier as

(2.6)

max w’ (2.7)

i p2(zj|Ho)
where z; = Tj(x), 1 < j < M, are feature transformations that depend on
the class being tested, thus they are class-specific features. Thus, it is clear
that for the Bayes classifier to be computed, it is not necessary to “lump”

together all the features into one high-dimensional feature set.

2.4 The sufficiency requirement

The sufficiency requirement of the type 1 class-specific classifier is much
milder than for a traditional feature-based classifier. Recall that in the type
1 class-specific classifier, we are assuming that

pe(x|H;) _ po(z;|Hj)

pz(x|Ho) ps(z;|Ho)’
which is far milder that (1.3) because each feature set needs only be suf-
ficient for one binary hypothesis test, while in (1.3) the common feature
set must satisfy the sufficiency requirements for M? — M binary tests. In
both methods, sufficiency is never achieved exactly. Because there is a fixed
amount of training data, the dimension of the PDFs that can be estimated
is limited. It might be hopeless to achieve (1.3) with a feature set of limited
size, but (2.8) might be achieved to a good approximation.

1<j<m, (2.8)

14 CHAPTER 2. THE TYPE 1 CLASS-SPECIFIC CLASSIFIER

2.5 Choosing The Null Hypothesis

A natural interpretation of Hy is the “noise-only” hypothesis in problems
where signals are imbedded in additive noise. Another interpretation of Hy
is as the “working” or “normal” case in a fault detection and classification
system. It is sensible to choose an easily analyzed case. One which makes
sense is the white Gaussian noise (WGN) case. Choosing the WGN hy-
pothesis has some advantages. First, an analytic solution for p,(z|Hj) is
often tractable and the sufficiency requirement against WGN is itself often
a sensible requirement. There are two important issues concerning Hy which
need to be addressed.

2.5.1 The H, tail problem

The first issue is that the denominator densities p,(z;|Hy) need to be accu-
rately evaluated in the tails. Consider a data sample x extremely different
from the Hy assumption. Because it is extremely unlikely under Hy, it
could happen that p,(z;|Hy) — 0 for all j. Small errors in the denominator
PDF's in the tails can cause huge changes in the likelihood ratio in terms of
percentage and no reliable decision can be made. This is why we normally
seek analytic PDFs for the denominator or approximations valid in the tails.
This is somewhat helped by the fact that we can choose Hy and have full
knowledge of it. Note that Hj is a mathematical convenience, an “imagi-
nary” class and does not need to represent real-world noise, etc. Additional
treatment of this issue as well as solutions for a wide number of feature sets
may be found in a recent publication [21].

2.5.2 The common H; requirement

The Type-I classifier uses a common reference hypothesis. The implicit
assumption in (2.7) is that the null hypothesis p,(x|Hp), is loosely speaking,
a member of each of the other classes Hy, Hy ... Hy,. Isay “loosely speaking”
because I do not actually mean that H; € Hy. A good discussion of this
idea is found in Kay [20]. I briefly explain it here. In order for a sufficient
statistic z; = T)j(x) to exist for the two classes Hy and Hj, it is necessary
for both Hy and H; to be contained in a larger class #;. This larger class
may be thought of as being the collection of all PDFs that can be written
using a particular parameterization of pgj)(x; 0;). Then, z; = Tj(x) is the
sufficient statistic for @; in the sense of the Neyman-Fisher factorization

P (x;0;) = g;(T;(x); 8;) hj(x).

2.6. EXAMPLES OF TYPE I CLASSIFIER 15

Furthermore, there must exist points in each parameter space {89,65 ...6%,}

that correspond to Hyp, such that
pa(x|Ho) = pi? (x;09) = p{) (x;09) = - - = p{*) (x; 03).

2.5.3 Sufficiency and the choice of H

The choice of Hy is coupled to the choice of sufficient statistics. Note that
the reference hypothesis should be distinguishable from a given class H;
through a low-dimensional sufficient statistic z;. For example, let Hy be
defined as white Gaussian noise. If we want to optimally classify a signal in
additive correlated noise against Hy, the features must contain information
about the parameters of the correlated noise. This is because measuring the
noise correlation can help determine if the data is from Hy or H;. On the
other hand, if Hy was defined to be the correlated noise background itself,
then the sufficient statistic is only related to how the signal differs from the
background noise. In general, there may be an optimal reference hypothesis
Hj ; for which the dimension of z; is the lowest. The freedom to choose
Hy j is lost if a common Hj is used. This is the primary disadvantage of the
Type I classifier and is avoided in the Type II classifier.

2.6 Examples of Type I classifier

2.6.1 Signal Models

Let the input data to the classifier be a sample of a time-series of N samples,
denoted x = [z1, x2, ..., zn]'. Consider the following 3 signal classes as
possible statistical models for x.

1. H1:
zt ~N(a,1), a#0, t=1,2...N.
2. HQZ
zy ~N(0,14+0?), o02>0, t=1,2...N.
3. H3:

T ~N(0,1+8%), B2>0 , t=1

.’I,‘tNN(O,l) , t>1

16 CHAPTER 2. THE TYPE 1 CLASS-SPECIFIC CLASSIFIER

where we use the shorthand notation N (u,o?) to represent iid Gaussian
noise of mean p and variance o?. Let the parameters o, 82, and o2 be
random variables that are fixed for the duration of x but whose probabil-
ity distributions are unknown. The object is to select sufficient statistics
(features) for each class.

Consider the following CS features:

21 = DT
zo = Y, z? (2.9)
z3 = |.CC1|2.

It should be obvious that we have set up this problem so that the “common
class”, Hy is given by z; ~ N(0,1), ¢t = 1,2... N. In the next section, we
see that these features are indeed sufficient statistics for the corresponding
class.

2.6.2 Sufficient statistics and their densities under H,.

In this section, we derive the sufficient statistics for hypotheses H; through
Hj in the example. For Hp, we write the likelihood ratio as a function of
the unknown parameter a.

Y 2m) ™" exp { (2 —)’ /2]

pw(x|Hla a)
Y, (2m) 2 exp {27 /2}

pw(X|H0)

= T exp {~(zt - @)*/2 - 27/2}

= TIY, exp {az; — o?}

= exp {ath — Na2}
t

It is clear that the likelihood ratio is a function of 2; = } , z;. Thus, no
matter what the distribution of «, the likelihood ratio test will depend on
the data only through z;. Therefore, z; is a SS for the problem of testing
H, against Hj. The distribution of z; under Hy is N'(0, N):

2

z
log p,(z1|Hp) = —0.5log(27N) — ﬁ

2.6. EXAMPLES OF TYPE I CLASSIFIER 17

For Hy, we write the likelihood ratio as a function of the unknown parameter

o2.

pa(x|Ho,0?) T (2r0?) 2 exp {—a}/(20%)}
Pa(xHo) Y, (2m) 2 exp { ~a7/2)

= Y, (0?) 2 exp {~a}/(20%) + a3/2)

_ (0.2)—N/2 exp{zéﬁ (UZ;I)}

It is clear that the likelihood ratio is a function of zo = 3", 7. Thus, no
matter what the distribution of o2, the likelihood ratio test will depend on
the data only through zo. Therefore, z5 is a SS for the problem of testing Ho
against Hy. The distribution of zo under Hy is Chi-squared with N degrees
of freedom:

log p,(22|Hp) = —logT'(N/2) — N/2log2 + (N/2 —1)logzy — 22/2

For H3, we write the likelihood ratio as a function of the unknown parameter

.

polx|Ha, ?) (21B%) 1 exp {—a?/(26°) } T, (2m) 1/ exp {27 /2]

pz(x|Ho) (2m) 1/ exp{—x%/2} Y, (2r) /2 exp{—w%/2}

(2% exp {—a?/(28%)}
(27)""/% exp {—x%/Q}

= (B%)7' 2 exp {~21/(26%) + 21/2}

It is clear that the likelihood ratio is a function of z3 = |z1|?>. Thus, no
matter what the distribution of o2, the likelihood ratio test will depend on
the data only through z3. Therefore, z3 is a SS for the problem of testing Hj
against Hy. The distribution of z3 under Hj is Chi-squared with 1 degree
of freedom:

logp,(z3|Hp) = —1/2log 2m — 1/21og 25 — z3/2

We have shown that z; through z3 are indeed SS for the corresponding
unknown parameters (and for the hypothesis tests H; vs. Hg). The features
and their PDF’s under the Hy hypothesis are summarized in Table 2.1.

18 CHAPTER 2. THE TYPE 1 CLASS-SPECIFIC CLASSIFIER

Hyp. | Feature Distribution
2
H |zi=Y,x¢ log p,(21|Hy) = —0.5log(2nN) — -
logp,(z2|Hy) = —log'(N/2) — N/2log2 +
_ 2 z
Hy | 2= 24 (N/2 —1)log 29 — 29/2
Hs | 23 =log(|z1]?) | logp,(2z3|Ho) = —1/21og 27 + 23/2 — exp(23)/2

Table 2.1: Table of features and PDF’s under Hy for the example.

H1 H2 H3

8
200 250 300 —20 —10 o

Figure 2.1: Log-histograms of features z1, 22, and z3 for Gaussian input data
plotted on the theoretical curves of log-PDF.

2.6.3 Testing the models under H,.

A crucial step that should be taken prior to proceeding with any CS devel-
opment is the validation of the Hy PDF’s. Figure 2.1 shows the result of
comparing histograms of z1, 2o, and z3 with theoretical PDF curves. There
is an excellent match with the formulas in Table 2.1. It is practically impos-
sible to test the tail probablilties, but validation near the PDF maximum is
important.

2.6.4 Simulation

A simulation was published for this problem. The reader is referred to [19].

Chapter 3

The Type 2 Class-Specific
Classifier

3.1 Definition

The Class-Specific classifier of Type II may be thought of as writing the
classical Neyman-Pearson classifier in terms of the raw data, with the PDF
of the raw data in the factored form,

p(x|Hj) = Qj(x, T}, Ho ;) p(z;|Hy), (3.1)

where z; = Tj(x) is a class-specific feature set for class j. This factorization
is made possible by the PDF projection theorem, which we introduce shortly.
The result is the Type-II class-specific classifier

argmja\.XQj(x,I},Ho,j) p(Zj|Hj). (32)

The factor Q;(x, T}, Hy ;), which we call the Q-function, is determined with-
out needing to train because it is determined from the transformation T} (x)
and the reference hypothesis Hy j, which are chosen a priori.

3.2 The PDF Projection Theorem

3.2.1 Motivation

The PDF projection theorem arises from the need to estimate the PDFs of

the raw data
p(x|H;), j=1,2...M.

19

20 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

It would be futile to attempt to estimate these PDF's directly. But only in
simple cases can these PDFs be parameterized in terms of a few parameters
and the parameters accurately estimated. We seek an alternative approach.
We seek a way to reduce x to a set of features, z; = Tj(x), estimate the
PDF's of the features p(z;|H;), then somehow transform or project this onto
the input data
p(z;|Hy) — p(x|Hj)

It is well known how to write the PDF of x from the PDF of z when the
transformation is 1:1. This is the change of variables theorem from basic
probability. Let z = f(z). Then,

pa(z) = |f'(2)] p:(f(2)). (3.3)
What we seek is a generalization of (3.3) valid for many-to-1 transformations.
Of course if T'(x) is many-to-1, it is impossible to reconstruct p(x) from p(z)
because in general, there will be an infinity of PDFs p(x) which generate
p(z). All we can hope for is one such PDF. The PDF projection theorem
delivers this and much more.

3.2.2 Summary of the theorem

We start with the following assumptions:

1. Let Hy be some fixed reference hypothesis with known PDF p,(x|H)).
Let X be the region of support of p,(x|Hp). In other words X is the
set of all points x where p,(x|Hp) > 0.

2. Let z = T'(x) be any feature set computed from the raw data x. We
denote by Z the image of X under the transformation 7'(x).

3. Let p,(z|Hy) be the PDF of z generated by p,(x|Hp). Clearly Z is the
region of support of p,(z|Hy), thus p,(z|Hy) > 0 for all z € Z.

4. Now, let f,(z) be any other PDF with the same region of support Z.
Then the function
Fp(x)=———+f.(2) at z=T(x) (3-4)

is a PDF on X, thus

/ F,(x) dx =1.
XEX

Furthermore, it can be shown that Fy(x) is a member of a class of PDFs
which generate f,(z), that is if x is drawn from F,(x) and if z = T'(x), then
the PDF of z will be f,(z). These assertions are proved in Section A.

3.2. THE PDF PROJECTION THEOREM 21

3.2.3 Importance of the theorem

The PDF projection theorem [22],[23] is a major advance in statistical hy-
pothesis testing because it allows us to work in the raw data domain rather
than performing likelihood comparisons in feature space. At the same
time, it allows PDF estimation to be done in feature space. To do this,
it “projects” PDF estimates from the feature space to the input data space.
Specifically, in (3.4), the PDF f,(z) is “projected” onto the input data space
when it is multiplied by the “Q” function

B Pz (x| Ho)
Q(X,Z,H()) - pz(Z|H0) .

Another very important aspect of the theorem is that the projected PDF
is a parameterization of the input data PDF. Let

p(x|Hj,0;5) = Q;(x,Tj, Hoz) p(zj|Hj,0;).

where 0; are parmeters of the PDF estimate of the features. The maximum
likelihood (ML) method to estimate p(z;|H;, ;) also produces a maximum
in p(x|Hj,0;). Thus, the ML method is also projected to the input data.
In addition, the hypothesis H; and feature transformation 7;() can also
be considered a parameters to be optimized. Note that this is a valid ML
approach thanks to the PDF projection theorem since regardless of H; or
Tj(), the result is a PDF.

3.2.4 Optimality Conditions

While it is interesting that Fy(x) is a PDF, it is not yet clear that F,(x) is the
best choice. Note that because the transformation z = 7'(x) is a dimension-
reducing transformation, it is not 1:1. Thus, the PDF that generates f,(z)
is not unique. We must ask why F,(x) in particular is useful and how should
Hj be chosen. To answer these questions, we let H; represent some data
hypothesis for which the PDF p,(x|H;) is desired. Let z; = T} (x) be a set of
information-bearing features and let p,(z1|H1) be an estimate of p,(z1|H1).
Then, according to (3.4), we have

pz(x|Ho)

.(x|H) = —————~
pw(| 1) pz(zl‘HO)

ﬁZ(Z1|H1) at zZ) — Tl(X). (35)

The approximation becomes exact when (a) p,(z1|H1) — p,(z1|H1) and (b)
when T7i(x) is sufficient for H; vs Hj. This can be immediately seen from

22 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

the well-known property that the likelihood ratio is invariant when written
in terms of a sufficient statistic. In particular,

i pz(x|Ho)
pz(x|Hi) = pz(TIH?)) p2(z1|Hy), (3.6)

which can be re-arranged as

Po(X[H1) _ po(z1|Hi)
pe(x|Ho) — p.(z1|Hy)’ (3.7)

which is exact if sufficiency is met. Note that requirements (a) and (b) are
interdependent. Thus, the choice of T'(x) and Hy must be chosen jointly.

3.2.5 When sufficiency is not met

The accuracy of the approximation (3.5) depends not only on how accurate
is p,(z|H,) is, but also on how sufficient is T'(x) for H; vs Hy. One thing
to keep in mind is that no matter what, (3.5) it is a PDF defined on the
space of x. Thus, (3.5) can always be regarded as an estimate of p(x|H;)
and accordingly, any increase in the likelihood function of the training data

N
L(x1,x9...xN) = Z log p(x|H1)

n=1

can be regarded as an improvement in the model.

3.2.6 Examples of PDF Projection Theorem

Example 1 In this ezample, we show that a PDF results even if the statis-
tic is not sufficient. Consider the case of Gaussian observations with fized
variance o and unknown mean. Let x = [z ...xN]. Let the feature be

K
z=T(x) =)z
i=1

where 1 < K < N. Let £(z;) = 0 under Hy and £(x;) = 1 inder Hy. Clearly
z 1is sufficient for the mean of x only if K = N. We have

N
pz(x|Hp) = (27r02)_N/2 exp {—% :1;12} .

2
773

3.2. THE PDF PROJECTION THEOREM 23

Under Hy, z will be Gaussian zero-mean with variance Ko?, thus

_ 1
pa(clHo) = rko?) 2 exp {7

We let

£.(2) = pa(2|HL) = (20K o)™ exp {_21(102 (2 — K)Z} .

By the projection theorem,

Pz(x|Ho)
Fo(x) =———p,(z|H
)=) P
Thus,
Fy(x) = (2r0?) N2 (2nKo?)'/?(2nKo?) /2
exp{ g [Ss 07— 327+ (o~ K]
F,(x) = (27r02)_N/2 exp {—ﬁ [Zfil zf - %z2 + %zQ — 2z + K]}
Fy(x) = (2m0?)"M2exp {_%2' [Zf\il z? — 22+ K]}

= (@r0?) N2 exp {—5kr [Tl (@i - 12 + iy 2]}

where we have made the substitution z = Y1 | ;. It is clear that the result
is a Gaussian PDF with mean u; = 1 for 1 < i < K and p; = 0 for
K +1<1i< N. Note also that it is a PDF regardless of the sufficiency of
z. It is also clear that the PDF F,(x) generates the PDF f,(z). Note also
that if K = N, then Fy(x) = py(x|H1) as predicted by the theory.

Example 2 In this example, we show that a PDF results even if f,(z) is
not p,(z|H1). We continue the above example, except we let K = N and
use the PDF

1 z
f(2) = No2 eXP{—N—Ug}a
which is entirely unrelated to p,(z|H1), but it is a PDF nevertheless. By the
projection theorem,

i N

Fy(x) = (210?)N2(2xNo?) /2 (No?)"Lexp {3k [N a2 — 422+ 32] }

= (2r0?) N2(27No?)'/2(No?) L exp {—%; [Zfil T7 — %(z -1)2+

1
N

I}

24 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

if we make the substitution z = Zfil xi,

Fy(x) = (2ro®)M2exp{-3L SN, 22+ N - 25X, =]}
= (2n0%) Mexp {3y SN, [#? +1 - 2]}

= (@2ro?) V2 exp {—5k N (mi - 1)},
which is clearly a PDF, as predicted by theory.

3.3 The Feature selectivity effect

The Q-function and the feature PDF provide a factorization of the raw
data PDF into trained and untrained components. The ability of the Q-
function to provide a “peak” at the “correct” feature set gives the classifier
a measure of classification performance without needing to train. In fact,
it is not uncommon that the Q-function dominates in (3.2), eliminating the
need to train at all. This we call the feature selectivity effect. An example
is a matched filter for known signals in noise. Signal waveforms can be
classified by comparing the outputs of bank of matched filters. If we regard
the matched filters as feature extractors and the matched filter outputs as
the features, it may be shown that this method is identical to comparing
only the Q-functions. There is no need to train on the distribution of the
feature values.

The curse of dimensionality can be avoided if the dimension of z; is
small for each j. This possibility exists, even in complex problems, because
z; is required only to have information sufficient to separate class H; from a
specially-chosen reference hypothesis Hy ;. The Type-I classifier is a special
case of the Type-II classifier. We previously introduced the Type I classifier
whose main disadvantage was the necessity of using a common reference
hypothesis. This problem is solved by Type-II classifier.

3.4 Data Dependent Reference Hypothesis

It is interesting to note about equation (3.5) that when p,(z1|Hi) —
p2(z1|H1) and the sufficiency requirement is met, the left side is exactly
Pz (x|H1) regardless of the choice of Hy, provided Hy remains within the
class of hypotheses for which the sufficiency requirement holds. Clearly,

3.4. DATA DEPENDENT REFERENCE HYPOTHESIS 25

a cancellation is occurring. For two null hypotheses Hy,, Hpy, we have
Pz(x|Hi,a) = py(x|H1,b) where

A pw(x|H0a)

Pz(x|H1,a
ol a) = o)

ﬁz(Z|H1)

and
A Dz (X|H0b)

50 (x| Hy, b
p(| 1) pz(Z|H0b)

p.(z|Hy).
This follows from the fact that

pz(x|Hoa) _ p2(z|Hoa)
pe(x|Ho) p,(2z|Hop)’ (3.8)

which follows from sufficiency.

Let H, be the set of hypotheses for which z is a sufficient statistic against
H;. We include H; in this set as well. Thus, both Hy and and H; must be
contained in H,. Thus, since the choice of Hy is arbitrary as long as it is
within #,, it makes sense to choose the most advantageous case. Further-
more, we can change it “on the fly”. In fact, the choice can depend on the
feature set z, thus we use the notation Hy(z). Thus,

%ﬁzmm at 2=T(). (39)

While this argument seems circular or even incestuous, changing the refer-
ence hypothesis as a function of z has no numerical effect on the result as
long as Hy(z) € H,. Therefore, it is a waste of time to ponder the philo-
sophical implications. There is an effect, of course, when the sufficiency
assumption breaks down. Then, we can only hope that the effect is minor.
From experience, we have seen that when sufficiency is only approximate,
choosing Hy(z) in the way we propose, namely to position it to achieve a
maximum of the PDF of z, tends to slightly bias the result higher. This is
analogous to the way that the generalized likelihood ratio test operates.

In particular, we can choose Hy(z) so that our PDF approximations are
more accurate, that is, we try to position it to give the larged value of
the denominator PDF (to avoid the tails). Note that the dependence on z
does not need to be explicit. We only need that z contain the information
necessary to form Hy(z).

ﬁw(x|H1) =

Example 3 We now provide an example of a data-dependent reference hy-
pothesis and show that the result is independent of the hypothesis as it varies

26 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

within a certain class. We consider again example 1, except now we let
K = N (for sufficiency). Clearly H, is the set of all 7id Gaussian PDFs
with fized variance o®. The only free parameter is the mean for which z
is sufficient. We let Hy(z) be the hypothesis (about x) dependent on z and
parameterized by o:

H()(Z): 5{$Z}: ,1S’L§N,

z
a
where o is some constant. Note that if o« = N, Ho(z) will be the hypothesis
that the input data has a mean equal to the sample mean. As before, we let
f2(2) = p(z|H1), thus our theory predicts Fy(x) = py(x|H1) regardless of
a. Let’s see if this turns out as predicted. We have

N
pa(x|Ho(@) = (2m02) /2 exp {—% > (i - z/a)2} -
i=1

Under Ho(z), z will be Gaussian with mean % and variance No?, thus

By the PDF projection theorem,

Fo(x) = (2r0?)"M?(27xNo?)/2(2nNo?)~1/?
1 N 2, 1 2 1.2 N\?
exp {_W [Zi_1($i —zfa)* + x(z—=N)* — 5z (1 — E)]}
= (27r02)*N/2 exp {—2—17 [Zz]\il mf — 22,4 N2

g

+o -2+ N-f+2 - 2]

QW
Q

— Cnrt) N exp { g [a2 - 224]}

= (2no?)~N/2 exp{—# [N (@ — 1)2] },

3.4. DATA DEPENDENT REFERENCE HYPOTHESIS 27

where we have made the substitution z = Zfil x;. It is clear that the depen-
dence on « has completely cancelled and the result is py(x|H1) as promised!
Note that the most logical choice for a would be « = N. This choice means
that the demominator will be at its peak. While this is not important in
this example since all PDFs are known ezactly, it will be important when
approzimations are used.

3.4.1 Relation to Asymptotic ML Theory

The use of a data-dependent hypothesis is a more general form of an existing
approach based on classical asymptotic theory which we now explain. In
particular, the feature is regarded as a maximum likelihood (ML) estimator
of a parameter and the data-dependent reference hypothesis is the hypothesis
that the parameter’s true value is equal to the ML estimate. Consider the
PDF p,(x|Hi,61), which depends on a parameter 6;. Ideally, we would like
to know p,(x|H1) which we can write by expansion:

po(x|H1) = /0 p2(x101) po(01|H1) 8. (3.10)

This is the classical Bayesian approach. The integral can be approximated
by appealing to asymptotic theory. Suppose pw(>5|01) had a single sharp
peak at the maximum likelihood estimate (MLE) 6;. Then,

pz(X|91) ﬁpw(X|é1) e—%(61—01)’1(01)(01—01)’

where I(0) is the Fisher’s information matriz (FIM) [18] and k; is the di-
mension of ;. The components of the FIM for PDF parameters 6;,6, are
given by
0% Inp,(x; 0)
Ip .(0)=-E|—— "= |.
ak,ﬂj () < agkagl

Carrying out the integral near 91, we have
A A k ~ 1
/pw(x|91)109(91|H1)d91 ~ po(B1|H1) po(x]01) (2m) 7 [1(81)|72.

Thus, asymptotic theory tells us to use the following approximation in place
of (3.10):

. A RPN
po(x|H1) = po(x(81) po(6:]Hy) (2m) [1(8:1)| 2 (3.11)
Rearranging in the form of (3.9) for better comparison, we have
x|0 A
polel) = — 22O) (3.12)

(ML

(2m) % [1(8:)]

28 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

To compare with (3.9), we see that z = 81 and p,(x|Hy(z)) = p,(x|Hi,8)).
Also, since p,(z|Hy(z)) is the Gaussian PDF of the MLE evaluated “at the

—k ~
MLE”, only the constant term (27T)TI|I(01)‘% remains.

3.5 The Chain Rule

In many cases, it is difficult to derive the exact PDF p,(z|Hp) in (3.5). On
the other hand, it may be quite easy to do it for one stage of processing at
a time. In this case, the chain rule can be used to good advantage. The
chain rule is just the recursive application of the PDF projection theorem.
For example, consider a processing chain:

LT)
The recursive use of (3.5) gives:

polx|Hy) = B2BTOOR b (v

_ pu(x|Ho(y)) py(y|Hp(w))
py(y[Ho(y)) pg(w|H(’)(w)) puw(W|H1)

(3.13)

_ pa(x[Ho(y)) py(y[Ho(W)) pu(w|Hy(z))
py(y[Ho(y)) pz(le()(w)) pz(z|H69(z)) p: (2| H1)

where Hy(y), Hj(w), H{(z) are possibly data-dependent reference hypothe-
ses suited to each stage in the processing chain. This may alternatively be
writen

pz(x[H1) = Q(x,T1, Ho(y))Q(y, To, Hy(w))Q(w, T3, Hy ())p. (2| H1).
(3.14)
There is a special imbedded relationship between these hypotheses. Let H,,
be the set of PDF's for which y is a sufficient statistic sufficient. Let H,, and
‘H, be similarly defined for w and z. Then, we have

We also have
H(')'(z) € H,, H(')(w) € Hw, Ho(y) € Hy.

The imbedding of the hypotheses is illustrated in Figure 3.1. The factor-
ization (3.13) together with the imbedding of the hypotheses we call the
chain-rule processor (CRP).

3.6. THE REVERSE CHAIN RULE 29

Figure 3.1: Imbedded hypotheses for chain-rule processor.

3.6 The Reverse Chain Rule

The intended use of the chain rule in classification (3.13) is to arrive at a
decomposition of the PDF of x under an arbitrary hypothesis into factors
of ever-decreasing data dimension. After finally arriving at the end of the
chain, the feature dimension is manageable by PDF estimation. It is also
possible to use the chain rule in reverse (as we have done for verification
purposes in some examples) by starting with a known PDF of x and solving
for the PDF of z. This can be useful to determine the PDF under a fixed
hypothesis for features which would be difficult to analyze otherwise. The
results are good deep in the tails. We re-arrange equation (3.13) as follows:

p2(2|H{ (2)) pw(w|Hy(w)) py(y|Ho(y))
pw(W[HY (2)) py(y|Hy(w)) pz(x|Ho(y))

Note that the expression for p,(z|H;) actually depends not only on z, but
on w,y, and x as well. This may written alternatively as

pa(x|H1)
Q(X, Tla HO(y))Q(ya T25 H(I)(W))Q(W, T3, H(’)I(Z)) e
This approach gives us a way to find the distribution of a set of features under

any fixed hypothesis. This approach can be used to determine the PDF of
features under the WGN hypothesis. This problem has been studies in the

p.(z|Hy) = pe(x|H1). (3.15)

p2(z|H1) = (3.16)

30 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

Module

N

%‘ Feature Calculation }H{ Feature Calculation HPDF Evaluation ‘

0 ‘>‘ Q-function Calculation }—>{ Q-function Calculation }

*ﬁ Feature Calculation }—){ Feature Calculation }—%PDF Evaluation ‘

0 %‘ Q-function Calculation }—% Q-function Calculation } 1

X 7%‘ Feature Calculation }—){ Feature Calculation }—%PDF Evaluation ‘
&

Raw Data
0 %‘ Q-function Calculation }—% Q-function Calculation } }

*ﬁ Feature Calculation }—>{ Feature Calculation }—%PDF Evaluation ‘

0 ‘>‘ Q-function Calculation }—>{ Q-function Calculation } t

*ﬁ Feature Calculation }—>{ Feature Calculation }—%PDF Evaluation ‘

0 ‘—>‘ Q-function Calculation }—9{ Q-function Calculation } t

Figure 3.2: Block diagram of a class-specific classifier.

past in the context of the reflection coefficients [24] and serial autocorrelation
function [25]. The above method is an entirely new method.

3.7 Classifier Architecture

The chain-rule processor (3.13) is ideally suited to modularization. Figure
3.2 is a block diagram of a class-specific classifier. Each arm of the classfier
is composed of a chain of feature transformations.

3.7.1 Class-Specific Modules

The packaging of the feature calculation together with the Q-function cal-
culation is called the class-specific module. A class-specific module imple-
mentation of the three-module chain in (3.13) takes the form

qout=0;

[y,qout] =modulel(x,qout) ;
[w,qout] =module2(y,qout) ;
[z,qout]=module3(w,qout) ;

3.7. CLASSIFIER ARCHITECTURE 31

classifier_output = log_pdf_evaluate(z) + qout;

Each stage is implemented by a function which makes the feature transfor-
mation and adds the log Q-function to the variable “qout”. For example,
module3.m computes z from w as well as adds the value

(3.17)

e -t (Pe0150)

P (2| H (2))

to qout. At the end of the chain, the aggregate log Q-function is added to
the log of the feature PDF prior to classification of the event. A library of
class-specific modules is already available for rapid development of classifiers.

3.7.2 Module Software Conventions

We will provide numerous examples accompanied with MATLAB software
listings. Therefore, we should say a little about the conventions used in
the software. The calling convention used for the class-specific module is as
follows

[z,qout]=module(x,qin,parameters....);

where x is the data for one event to be classified and any necessary param-
eters are put at the end.

Events to be classified may be divided into a number of segments where
features are extracted from each segment. As a convention, x is dimen-
sioned DIM1-by-N and z is dimensioned DIM2-by-N where N is the number of
segments. As a rule, qout is computed separately on each segment, thus
gin and qgout are dimensioned 1-by-N.

Often there is need to further subdivide the segments, resulting in more
segments at the output. In the case, x is dimensioned DIM1-by-N1 and z
is dimensioned DIM2-by-N2. Therefore, qout will be dimensioned 1-by-N2
and the values of qin are distributed appropriately to qout. For example,
suppose x is dimensioned 1000-by-1 and z is dimensioned 3-by-10, thus x is
segmented into 10 segments of 100 samples and the output feature dimension
is 3. In this case, qin is a scalar (1-by-1) and qout is 1-by-10. Within the
function, we would have the line

gout = (1-by-10 vector of log Q values) + qgin/10.

Thus, the value of qin is distributed equally among the output segments.

32 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

3.7.3 One-to-one transformation modules

The simple case of 1:1 transformations was discussed in relation to equation
(3.3). The Q-function is just the absolute value of the determinant of the
Jacobian matrix of the transformation.

921 9z 9z

Or1 Oxzo Ozx3

Ozy Oz Ozp
J = Or1 Oxzo Ox3

Example 4 An ezample is the log transformation. Let z = log(xz). We have
dy/dx = 1)z, thus log@Q = logJ = log(1/z) = —logx = —z. The function
module_log.m is illustrated below. Notice that the idx input variable defines
the indexes of those features which are transformed.

function [zout,qout]=module_log(zin,qin,idx);
zout=zin;

zout (idx, :)= log(zin(idx,:));
gout=qin-sum(zout (idx,:),1);

3.7.4 Fixed Reference Hypothesis Modules

For modules using a fixed reference hypothesis, care must be taken in cal-
culation of the Q-function because the data is more often than not in the
tails of the PDF. For fixed reference hypotheses the QQ function is

Pz (x|Ho)
x, T, Hy) = 3.18
QOOT) =, (el Ho) (19
For Hy being WGN, p,(x|Hj) is quite simple to write, namely
N
log p.(x|Hy) = —N/2 log(27) — (Z x%)/2 (3.19)
n=1

The denominator density p,(z|Hp) must be known exactly or approximated
carefully so that it is accurate even in the far tails of the PDF. Issues of this
type are covered in detail in a recent publication [21]. Note that any models
developed for a Type 1 Class-specific classifier may be converted into type-2
modules simply by adding the numerator PDF (3.19).

3.7. CLASSIFIER ARCHITECTURE 33

Example 5 As a very simple example of a fized-reference module, let x be
a time-series and let z be the power estimate

1 X
2
z=—= Z ;.
N n=1 '
Clearly z is a Chi-square RV with N degrees of freedom scaled by 1/N. Thus,

log p(z|Hy) = log N —log(T'(N/2))—(N/2)log(2)+(N/2—1) log(Nz)—J(Vz/Z).
3.20

% Power feature using fixed reference hypothesis
function [z,qout]=module_power_fixed(x,qin);
N=length(x);
z=sum(x(:)."2);
% Fixed reference method
1pxHO= -N/2 * log(2*pi)-sum(x."2)/2;
r= 1/N;
1pzHO = -log(r)-gammaln(N/2)-(N/2)*1log(2)+(N/2-1)*log(z/r) - z/(2*r);
qout=qin+1pxHO0-1pzHO;
return

Variable Reference Hypothesis Modules

For a variable reference hypotheses, the QQ function is

_ pa(x[Ho(z))

p=(z|Ho(2))
Modules using a variable reference are usually designed to position the refer-
ence hypothesis at the peak of the denominator PDF, which is approximated
by the central limit theorem (CLT).

Q(x,T, Hy(z)) (3.21)

Example 6 We can use the example above and re-design the module as a
variable reference module. Now, instead of using reference Hy, we use the
reference hypothesis Ho(z) that x has variance 0® = z. Thus,
N
log pz(x|Ho(2)) = —N/2 log(2mz) — () 2)/(2z). (3.22)
n=1
Now, z will still be Chi-square but we can approzimate its PDF by the CLT.
Accordingly, z has mean 0® = z and variance 20* /N = 222 /N. Thus,

log p(z|Ho(z)) = —1/2 log(4nz* /N)—(2—2)?/(42*/N) = —1/2 log(4nz*/N).
(3.23)
Notice the complete cancellation of the one term.

34 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

% Power feature using variable reference hypothesis
function [z,qout]=module_power_variable(x,qin);
N=length(x) ;
z=sum(x(:)."2)/N;

lpxHz= -N/2 * log(2*pi*z)-sum(x."2)/2/z;
zvar=2*z"2/N;
lpzHz= -1/2 * log(2*pi*zvar);
qout=qin+lpxHz-1pzHz;

return

Simulation

Let us compare the fixed hypothesis method (3.19)and (3.20) with the vari-
able hypothesis method (3.22) and (3.23) for the power feature. The code
below compares the two methods.

N=100;

fprintf (’Fixed ref

for it=1:10,
% Create data
scale = 100*rand;
x=randn(N,1)*scale;

Variable ref error \n’);

[z,1Q1]=module_power_fixed(x,0);
[z,1Q2] =module_power_variable(x,0);

fprintf(°%14.7e
end;

»14.7e Y%g\n’, 1Q1,1Q2,1Q2-1Q1);

The program creates input data x from iid samples of Gaussian noise, but
with a random scaling. The following results were produced.

Fixed ref Variable ref error

-5.6586675e+03 -5.6586677e+03 -0.000166666
-3.5594421e+03 -3.5594422e+03 -0.000166667
-5.2287542e+03 -5.2287544e+03 -0.000166667
-5.1864650e+03 -5.1864652e+03 -0.000166667
-4.9694992e+03 -4.9694993e+03 -0.000166666
-4.1845311e+03 -4.1845313e+03 -0.000166667
-5.6939485e+03 -5.6939487e+03 -0.000166667

3.7. CLASSIFIER ARCHITECTURE 35

-5.6560365e+03 -5.6560367e+03 -0.000166667
-5.6915408e+03 -5.6915410e+03 -0.000166667
-5.2675655e+03 -5.2675656e+03 -0.000166667

There is almost no difference between the approaches (a .00016 error in
log domain). It may also be verified when the input data is non-Gaussian,
although the feature is no longer a sufficient statistic. The error rises as N
decreases because the CLT approximation worsens.

3.7.5 Maximum Likelihood Estimators

The maximum likelihood (ML) approach (3.12) may also be used. To con-
tinue the example above, it is known that the ML estimator for variance is
the sample variance which has a CR bound of 02, = % Applying (3.12),
we get exactly the same result as the above variable reference approach.
Whenever the feature is also a ML estimate, the two methods are identical.
This only happens when the asymptotic results hold, i.e. when the features

are small number ML estimates and the amount of input data is large.

36 CHAPTER 3. THE TYPE 2 CLASS-SPECIFIC CLASSIFIER

Chapter 4

Selection of Models and
Features

One question we have not yet covered is how does one determine an appro-
priate feature set or PDF model for a data class? Contrary to what the
reader may believe up to now, there is rarely a statistical analysis done to
verify that a particular set of features is sufficient. The choice of features re-
mains an art requiring intuition. This intuition is is helped by the methods
of resynthesis and model order/segment size selection discussed below.

4.1 Feature Selection

4.1.1 Establishing Sufficiency by Resynthesis

In many problems, the ability of a human to classify an event exceeds the
ability of the machine. Human performance is almost always a lofty goal.
It is therefore reasonable to choose features which can represent the data
with enough fidelity to re-synthesize the event to the satisfaction of a human
observer. What I mean is that the human observer’s ability to classify is
not adversely affected by the loss of information in calculating features. It
is then reasonable to conclude that the sufficiency requirement will be met,
at least to a good approximation.

Synthesis Modules

To formalize the synthesis of data from features in a software architecture
in a consistent manner, we should define the format of a data resynthesis
module. As an example, we provide the module which resynthesizes data

37

38 CHAPTER 4. SELECTION OF MODELS AND FEATURES

from autoregressive (AR) features (see sections 5.2, 5.4). We are concerned
with re-synthesizing data from log-bilinear transformed AR features. The
features are the output of the chain:

qout=0;
[y,qout]=module_fftmsq(x,qout,segment_size);
[r,qout]=module_acf (y,qout,P);

[k ,qout]=module_acf2rc(r,qout);

[z, gqout] = module_bilinear(k, qout);

Since we are now working backwards, the first module to use corresponds
to the last one. Thus, the above can be un-done by:

k
X

module_bilinear_synth(z) ;

module_ar_synth(k, P, segment_size) ;

The second synthesis module un-does the first 3 modules since it is based
already on the RCs.

function k = module_bilinear_synth(z);
z(1,:) = exp(z(1,:));
K = exp(z(2:end,:));
K = (1-K)./(1+K);
z(2:end,:) = K;
return

function x = module_ar_synth(z, P, segment_size);

n_feats = size(z, 1);
n_segments = size(z, 2);

% this filter command is only used to determine init_cond

% init_cond is determined this way to make sure it has the right form
% the filter output y is ignored

% it doesn’t matter what the input signal is, (100 is arbitrary)
a=[1; zeros(P,1)];

[y, init_cond] = filter(1.0, a, randn(100,1));

% allocate space for output
x = zeros(n_segments*segment_size,1);
for(i_segment = 1:n_segments),

4.1. FEATURE SELECTION 39

r0 = z(1,i_segment);
K = z(2:P+1,i_segment);

% Prevent possible unstable filters
K=min(K, .99);
K=max (K, -.99);

[a,e] = rc2poly(K,r0);

w = randn(segment_size,1)*sqrt(e);
[y, init_cond] = filter(1.0, a, w, init_cond);

i_first_samp = (i_segment-1)*segment_size+1;
i_last_samp = i_segment*segment_size;
x(i_first_samp:i_last_samp) = y;

end;

4.1.2 Determination of Segmentation and model order

Once a feature set is chosen, it may be possible to fine-tune it. This is
particularly true if the features require data segmentation or if the features
require specifying a model order. The method now presented may be a way
to automatically determine these parameters.

In many statistical models, there are two parts to the modeling: mea-
surement PDF and spatio-temporal distribution. For example, in an HMM,
the state PDFs and the state transition matrix are separate components of
the model. By removing the spatio-temporal part of the model, a simplified
model results. It may be possible to optimize the feature model order and
segmentation based only on the simplified model. We have conducted many
experiments that show conclusive results.

The particulars of the method are now presented. Let the feature data
be written Z*¥ = {2z 2k ... z’ka} where k is a particular choice of segment
size and/or model order. We assume that Z* are the features computed from
the entire training set of raw data X including all events. We also assume
that z¢ are low enough in dimension that a parametric PDF estimator (i.e.
Gaussian Mixture) can be estimated from the data. Because the segment
size may change, the total number of segments N also is a function of k.
But, the data must originate from exactly the same input raw data X. Let
the data be divided into a training set (X, Z¥) and testing set (Xie, ZE,)

40 CHAPTER 4. SELECTION OF MODELS AND FEATURES

for cross-validation. Next, the PDF
Pr(z")

is estimated from Z¥. for model choice k. The feature PDF is projected to
the input data space where it can be compared across different values of k.
We have

L(k) =1log Q(X,Z") + Y logpy(zh),

where Q(X,Z*) is the aggregate Q-function for the data set. L(k) is cal-
culated for (Xe, ZE). For added accuracy, L(k) can also be computed by
swapping Zfr and Zfe and averaging. The optimal choice of & is that which
maximizes L(k).

This approach is robust against over-parameterization because as the
model order (and dimension of z*) increases, the ability to estimate the
PDF worsens and the average of the cross-validated likelihood will fall. In
addition to finding the most parsimonious model for the data, it also can
provide a measure of feature selectivity for the class.

4.2 Type II classifier, Advantages

The Type-II classifier is a major improvement on the Type-I classifier be-
cause it allows each class to use a different reference hypothesis, effectively
removing the requirement of a common Hy. Why is this important? Because
we can choose the reference hypothesis on a class-by class basis allowing us
to (1) minimize PDF approximation errors and (2) optimize the “sufficiency”
of the features with respect to the reference hypothesis. Further advantages
can be realized if the reference hypothesis is changed “on the fly” to reduce
or eliminate problems associated with evaluation of PDFs on the tails.

4.3 PDF Model Selection

It is difficult to explain how this is done except to say that it involves
intuition. All that can be said for certain is that there is a well-defined way
to test the “goodness” of a model.

Chapter 5

Examples

In this chapter we present examples of class-specific modules and chains of
modules. The examples are chosen for their usefulness and teaching value.
Each example is broken down into modules. For each module, we describe
the following

1.

Features and Region of Sufficiency. We describe the feature trans-
formation z; = T);(x) and the “ Region of Sufficiency” (ROS) for the
features. The ROS, denoted by ., must include both (a) the “target
class” H; that this feature set is designed for, and (b) the reference
hypothesis Hp ; used in the Q-function. We drop the subscript j for
simplicity.

. Reference Hypothesis. We define the reference hypothesis Hy ;

used in the Q-funtion

QxaT'aHO,' = -
(e T, Hog) p.(z;|Ho,j)

We drop the subscript j for simplicity. Often this hypothesis is a
data-dependent reference, written Hy(z).

. Input PDF. The numerator of the Q-function.
. Output PDF. The denominator of the Q-function.

. Software Module. We provide a MATLAB inplementation of the

module.

41

42 CHAPTER 5. EXAMPLES

5.1 Linear Functions of Exponential and Chi-
square RVs

We now consider a set of features that are formed by an arbitrary linear
function of a set of independent exponentially distributed RVs.

5.1.1 Features and Region of Sufficiency

Our target class is a vector of exponentially distributed RVs such as the
magnitude-squared values of a set of complex FFT bins in which we assume
the means are approximately constrained to a Inear subspace. Let y =
[y1,92 . ..yn] be such vector. Let

z=A'y,
where A is an N x M matrix (M << N) of rank M. Let #, be the

set of PDFs of such exponentially distributed vectors y with mean vector
contained within the linear subspace formed by the columns of A.

5.1.2 Reference Hypothesis

We use a variable reference hypothesis Hy(z). For Hy(z), we seek a hypoth-

esis which (a) is contained in H, and is as “close” as possible to z. This can

be done by projecting the input vector upon the column space of A. Let

Hy(z) be the hypothesis that y is exponentially distributed with mean
y°=A (A'A) !z

Notice that A’ y* = z, that is under Hy(z), the mean of z is z itself.

5.1.3 Input PDF

The PDF of y under Hy(z) is

1 ; .
py(yi|Ho(z)) = 7 P {—y—i} 1<i<N, (5.1)
1

where {y?} are the components of y*.

5.1. LINEAR FUNCTIONS OF EXPONENTIAL AND CHI-SQUARE RVS43

5.1.4 Output PDF

We make the Gaussian approximation to p,(z|Hy(z)) and can easily compute
the mean and covariance. The mean of z is

2" =A"y*=A'A (A'A) 'z =u.

The covariance of y under Hy(z), denoted by X7 is the diagonal matrix
whos diagonal elements are [(y7)?, (y5)? ... (y%)?]- The covariance of z under
Hy(z) is

7 =A' 3 A.
Thus,
logp,(z|Ho(z) = —TF log(2r) — L log |det(52))|
12— 2)(22) 1z - 27) (5.2)

= —ZF 1og(27) — 1 log |det(22)]
since z = z°.

5.1.5 Software Module

An implementation of the module is provided below.

function [z,qout]=module_a_exp(y,qin,A,Ap);
%function [z,qout]=module_a_exp(y,qin,A,Ap);
%Ap = A * inv(A’ * A);

[n,P]=size(A);

[n2,M]=size(y);

if(n "= n2), error(’Dimension mismatch (y,A)\n’); end;
z=A xy;

% loop over segments
for i=1:M,

% mean of y under Hz
yz = Ap * z(:,i);

% covariance of y under Hz

44 CHAPTER 5. EXAMPLES
Syz = diag(yz."2);

% mean and covariance of z under Hz
zz = A’ ¥ yz;
Szz = A’ * Syz * A;

% exponential PDF of y
lpyHz = - sum(log(yz)) - sum(y(:,i) ./ yz);

% Gaussian PDF of =z
ldetSzz=log(abs(det (Szz)));
lpzHz= -P/2*1log(2*pi)-0.5*1detSzz;

qout(i) = qin(i) + lpyHz - 1lpzHz;
end;

5.1.6 Simulation

How can the PDF projection approach be tested? One very useful approach
is to invert the PDF projection theorem to solve for

py(y|H1)
Q(Z, Ta HO(Z))
and use a hypothesis Hy for which p,(z|H;) is known. Accordingly, we
chose Hi to be the case that the elements of y were exponential RVs with
unit mean (and unit variance). For “truth” values of p(z|H1), we used
the Saddlepoint approximation [21]. The MATLAB program pdf_spa.m
implements the PDF of z under Hj.
In the simulation used the feature set z = A’y where

py(z|Hy) ~ (5.3)

: : : ,
g (5
Test data was created with a parabolic power envelope. Specifically, com-

plex zero-mean independent Gaussian data {z;} was created such that the
variance of sample x; could be described by the function

N 2 N
5(|mi|2):a(—5+z’—1> —I—b(—E—I—i—l)—l—c, 1<i<N,

5.2. AUTOCORRELATION FUNCTION 45

_5 — -
_lo — -
T -15f oy i
E G
= ; ;
IS ve .
G 20 et i
w A
D -
a .
o
S -25 n
d B
=30 5 > . ,
_35 - B -
-40 1 1 1 1 1 1 1
-40 -35 -30 =25 -20 -15 -10 -5 0
log-PDF (SPA)

Figure 5.1: Comparison of p,(z|Hy) using equation (5.3) with SPA.

for a,b,c which were chosen at random. Then, y; = |z;|2. For each realiza-
tion of the experiment, we chose each of a, b, ¢ from the uniform distribution
in the range [—3, 3]. Clearly the mean of y is contained in the column space
of A. The realm of (approximate) sufficiency of z, denoted #, spans all
processes so created with parabolic power envelopes.

Approximations of p,(z|H;) using (5.3) were compared with the sad-
dlepoint approximation [21]. The SPA PDF is implemented by MATLAB
function pdf_spa.m. The comparison is shown in Figure 5.1 (a). There is
good agreement between the two approaches.

5.2 Autocorrelation Function

In this example, we design a two-module chain for a subset of the auto-
correlation function (ACF) estimates using the FFT method. In the FFT
method, the ACF estimates are 1/N times the real-valued inverse-DFT of
the magnitude-squared length-N DFT of the data. If z is the first P+1 ACF

46 CHAPTER 5. EXAMPLES

lag estimates, then #, is the set of all stationary Gaussian processes which
can be described by a low-order autoregressive (AR) process of order P.
This is an approximation valid for large N. The processing chain necessary
to compute the ACF coefficients can be broken down into two stages:

1. Compute y, the magnitude-squared FFT bins.

2. Let z equal a subset of the elements of IFFT(y), the real part of the
inverse DFT of y.

5.2.1 Stage 1l
Features and Region of Sufficiency
Let y be the length N/2 + 1 vector of magnitude-squared bins of the DFT

of x.

!
Y = [Y0,91---Yny2l

where
2

N
Z l_ie—jZsz/N
=1

Y = 0<k<NJ/2

The region of sufficiency of y is quite broad, encompassing all quasi-
stationary Gaussian processes.

Reference Hypothesis

For our reference hypothesis for this stage, we use Hy, the standard normal
density (WGN hypothesis with unit variance).

Input PDF
We have
1
palx|Ho) = (2) VP2 exp {—5 Zw?} . (5.4
i=1
Output PDF

Note that under Hy, y is a set of independent RVs. It is easily shown that
Xo and X/ are real and yo,yn/2 obey the x%(1) density with mean N and

5.2. AUTOCORRELATION FUNCTION 47

mﬁmﬁN?AmgﬂnﬁwkﬁmammedmmmWAomwm
exponential density with mean N and variance N2. Thus,

N/2
py(y[Ho) = [] py(vi|Ho), (5.5)
=0
where
VHY — L A1/ {_ﬂ} L
py(yil Ho) = NV (%i/N) expy—on((= 0.N/2 (5.6)
and)
Yi .
py(yi|H0):N exp{—ﬁz}, 1<i<N/2-1. (5.7)

Software Module

function [y,qout]=module_fftmsq(x,qin,N);

% determine number of segments
nsamp=length(x(:));
M=floor (nsamp/N) ;
if (nsamp ~“= MxN),
error (’Length of data not divisible by DFT size’);
end;

% Here we compute the spectrogram.
y=abs (specgram(x(:),N, [],ones(N,1),0))."2;

[nf ,m]=size(y);

% Compute Q for each of M segments

x=reshape (x,N,M) ;

1pxHO = -N/2*log(2*pi)-sum(x."2)/2;

realbins=[1 N/2+1];

cplxbins=[2:N/2];

1pyHO = expon_dist(y(cplxbins,:),N) + chisql_dist(y(realbins,:),N);

if (length(qin) "=1), error(’qin not a scalar’); end;

% divide scalar qin by M to distribute over the segments.

48 CHAPTER 5. EXAMPLES

gout=qin/M + 1pxHO - 1pyHO;
return

function 1 = expon_dist(y, ym)
1 = sum(-log(ym)-y./ym) ;
return

function 1 = chisql_dist(y, ym);
1 = sum(-log(ym)-log(2*pi)/2-1log(y./ym)/2 - y./(2%ym));
return
5.2.2 Stage 2
Features and Region of Sufficiency

We let z be a subset of the inverse DFT of y:

1 N-1

a=% kgo yi exp{—j2rki/N}, 0<i< P, (5.8)

where we assume yy_; = y;. This is a transformation which may be written
entirely in terms of real variables:

1 N-1

P = — 127ki /N <3< P ;
% N}gykcos{j wki/N}, 0<i< (5.9)

This has a compact matrix notation
z = Cly,
where C is the (N/2 + 1)-by-(P + 1) matrix defined by
2
Cij = Ncos(27rz'j/N), 0<j<P 1<i<N/2—-1 (5.10)

1
Cij = meos(mij/N), 0<j <P, i=0,N/2. (5.11)

Since z is N times the ACF estimates of order P, the region of (approximate)
sufficiency of z is all AR processes of order P.

5.2. AUTOCORRELATION FUNCTION 49

Reference Hypothesis

We let Hy(z) be the hypothesis that y obeys the AR spectrum corresponding
to z. Thus, we must use the Levinson algorithm to solve for the P-th order
AR coefficients o, a*. If A*(k) is the DFT of a* (padded to length N), then

0.2
70 = o

is the AR spectrum corresponding to a*. We let

y? = [P%(0)... P*(N/2)] (5.12)

Input PDF

We need to evaluate py(y|Ho(z)) and p,(z|Hy(z)). We assume {y;} are a set
of independent exponential and x? RVs with means corresponding to {y?},
the elements of y*. Specifically,

_ 1 2\—1/2 Yi -
Py(yz'|H0(Z)) - yf\/ﬁ (yZ/yz) €xp {_% 1= OaN/Q (513)
and
1 .
py(yi|Ho(2)) = — exp {_y_;}’ 1<i<N/2-1 (5.14)
Y; Y;
Output PDF

Because Hy(z) is “close” to z, we approximate p,(z|Hy(z)) by the central
limit theorem (CLT). Under Hy(z), the elements of y are independent with
mean y* and diagonal covariance X7, which are defined by

2(yiz)25 1= OaN/Z
.o A
25 (6,4) = E((yi — v§)?|Ho(2) =
(¥?)?, 1<i<N/2-1.
We can then easily compute the mean and covariance of z:

z° = E(z|Ho(2)) = C'y7,

and
= ZZ C.

50

CHAPTER 5. EXAMPLES
1 H, = D) 150(27) — L log|det(2?
ngz(z| O(Z)) D) Og(7T) 2 Og‘ et(z)|
—1 (z — 20.)' (%) (2 — Zo2) (5.15)

~) log(2m) — § log|det(S2)|

where in the last step, we make the approximation z? ~ z. This approxi-
mation becomes better as N becomes larger.

Software Module

function [z,qout]=module_acf(y,qin,P);

[n,M]=size(y) ;
N=(n-1)*2; % DFT size
realbins=[1 N/2+1];
cplxbins=[2:N/2];

times = [0:N/2]’;
C=cos(times* (2*pi/N)*[0:P])
.* repmat ([1;2*ones(n-2,1); 1]1,1,P+1) / N~2;

% compute ACF
z=C’ * y;
if(“all(size(qin)==[1,M])), error(’qin wrong size’); end;
for i=1:M,
% compute AR coefficients

[a,r0]=1levinson(z(:,1i),P);

% compute AR spectrum
Pz = r0 ./abs(fft([a’; zeros(N-P-1,1)]))."2;

% mean of y under Hz
yz=N*Pz(1:n);

% prevent very small values
yz=max(yz, repmat(max(yz)*le-6, n, 1));

5.3. AUTOCORRELATION USING SPA 51

% mean of z under Hz
zz = C'*yz;

lpyHz = expon_dist(y(cplxbins,i),yz(cplxbins)) + ...
chisql_dist(y(realbins,i),yz(realbins));

% comoute covariance of z

y_stddev = sqrt(yz."2 .* [2; ones(n-2,1); 2]);
Sz = C .* repmat(y_stddev,1,P+1);

Sz = Sz’ * Sz;

% compute Gaussian PDF of z
% z_err = z(:,1)-zz;

% 1lpzHz = -(P+1)/2%log(2*pi) - .5 * log(abs(det(Sz))) ...
% -.5%z_err’*inv(Sz) *z_err;
lpzHz = -(P+1)/2*log(2*pi) - .5 * log(abs(det(S5z)));

gout (i)=qin(i)+1pyHz-1pzHz;
end;
return

5.2.3 Simulation

In the next example, we re-visit this example using a fixed reference hypoth-
esis and compare the two methods.
5.3 Autocorrelation using SPA

We now re-visit the above example using a fixed reference hypothesis and
compare the results.

5.3.1 Reference Hypothesis

We use the WGN reference hypothesis.

5.3.2 Input PDF

The input PDF is the same as equation (5.4).

52 CHAPTER 5. EXAMPLES

5.3.3 Output PDF

For p(z|Hy) we use the saddle point approximation (SPA) described in the
SPA paper [21] Section IV-B (Case I). The MATLAB function pdf_spa.m
implements the SPA.

5.3.4 Software Module

The function module_acf_spa.m implements the class-specific module based
on pdf_spa.m.

function [z,qout]=module_acf_spa(x,qin,P,N);
% determine number of segments
nsamp=length(x(:));
M=floor (nsamp/N) ;
if (nsamp "= Mx*N),
error (’Length of data not divisible by DFT size’);

end;

% Here we compute the spectrogram.
y=abs(specgram(x(:),N, [],ones(N,1),0))."2;

[n,M]=size(y);

times = [0:N/2]°;
C=cos(times* (2*pi/N)*[0:P]) .* repmat([1;2*ones(n-2,1); 1]1,1,P+1);

% compute ACF
z=C’ * y * (2/N);

if("all(size(qin)==[1,1])), error(’qin wrong size’); end;
for i=1:M,

1pxHO = -N/2*log(2*pi)-sum(x(1+(i-1)*N : ix*N)."2)/2;
1pzHO = pdf_spa(z(:,1),C,3,[1);

gout (i)=qin/M+1pxHO-1pzHO;

% scale z so it is ACF

5.4. AUTOCORRELATION FEATURE CONDITIONONG 53

—50 T T T 0.8
o
—100 |- — 0.6 -
—150 | = o.4af -
. (&}
_ o
38
2 o
= . 3 K
= —200 - — S 0.2 =1
= P =) Cos o
- (=) . o < ~

s N (=% > . <
= —250 . = = 0| C R et OO
o r =
= . .
E=] o

—300 - 7 8 —0.2 -

/' o
—3s0|} ¢ . —0.4
O(:)
—_400 H i i —_o0.6 R i i
—400 —300 —200 —100 o —400 —300 —200 —100
log Q (Fixed. Hyp. Method) log Q (Fixed. Hyp. Method)

Figure 5.2: Comparison of log Q function with example 5.2.

z(:,i)=z(:,1) /(2*N);
gout (i)=qout (i) - (P+1)*log(2*N);
end;
return

5.3.5 Simulation

In a simulation, we created data using an AR(4) model. AR coefficients
were randomly created in each trial by choosing the reflection coefficients
uniformly in the range [-1,1], then transforming into AR coefficients. The
result is plotted in Figure 5.2. On the left, we see that the log-Q function
of the two methods tracks closely across a wide range. On the right, the
difference is plotted showing excellent agreement. In the plot, the circles
represent the error when the exponent term in (5.15), i.e. the term involving
(z—2?), is neglected, while the dots show the results when it is inclued. There
is no noticeable difference. Note that the results show excellent agreement
yet for the fixed hypothesis method, they are in the far tails of p(z|Hj).

5.4 Autocorrelation Feature Conditionong

The autocorrelation estimates, while a good sufficient statistic, are not good
features from a PDF estimation standpoint. This is perhaps because of

o4 CHAPTER 5. EXAMPLES

the interdependence of the ACF samples. The reflection coefficients are
more independent of one another, but suffer from anothet problem : for
stable estimates, they are constrained to the interval [-1,1]. For this reason,
it is advantageous to make a two-step transformation: first to reflection
coefficients, and then a bilinear transformation to map the features to a
new space where the features appear more independent and Gaussian. Both
transformations is 1:1 and characterized by a Jacobian.

5.4.1 Converting ACF to Reflection Coefs

The conversion to reflection coefs (RC) from ACF is done as a by-product
of the Levinson algorithm [26]. We define the conversion as

[7‘0,7‘1 ...’r‘p] — [To,Kl Kp]

The Jacobian is
1 P P-1)
7=(+) 1- K2).
) IMa-xy
Note the fact that the last RC is not included in the Jacobian (this not a
typographical error). The software is included below.

function [K,pout]=module_acf2rc(r,pin);
[n_acf,n_samples]=size(r);
P=n_acf-1;
assert(all(size(pin) == [1, n_samples]));

[a,e,K]=levinson(r,P);

pout = pin - Pxlog(r(1,:)); % accounts for normalizing the ACF

for i=1:P-1,
pout = pout + (P-i)*log(1-K(i,:)."2);
end;

K=[r(1,:); KI;

assert(all(size(K) == [P+1, n_samples]));
assert(all(size(pout) == [1, n_samples]));

return

5.5. CEPSTRUM 55

5.4.2 log-bilinear transform

The transformation is defined as
[7‘0, K... Kp] — [log(ro), K{ .. K}p]

where

The jacobian is

The software is provided below.

5.4.3 Software

function [z, pout, init_cond] = module_bilinear(x, pin, init_cond);
[n_feats, n_segments] = size(x);
assert(all(size(pin) == [1, n_segments]));

K = x(2:n_feats,:);

[log(x(1,:)); log((1-K)./(1+K))1;

N
I

% jacobian
jac = -z(1,:) + sum(log(2./abs(1-K.*K)), 1);

pout = pin + jac;

return

5.5 Cepstrum

In this section, we develop a module for Cepstrum estimates. The theory
comes from the SPA paper [21].

56 CHAPTER 5. EXAMPLES

5.5.1 Features and Region of Sufficiency

One way to compute the Cepstrum is to compute the inverse-DFT of the
logs of the magnitude-squared DFT bins. It is difficule to define the ROS
for the Cepstrum except to say it is probably not much different from the
ROS for the ACF since both are spectral estimators.

5.5.2 Reference Hypothesis
We use the WGN reference hypothesis.

5.5.3 Input PDF

The input PDF is the same as equation (5.4).

5.5.4 Output PDF

For p(z|H,) we use the saddle point approximation. The saddlepoint ap-
proximation has been derived for the Cepstrum estimates in the SPA paper
[21] Section IV-B (Case II). The MATLAB function pdf_spa.m implements
the SPA for this and other cases.

5.5.5 Software Module

The function module_ceps_spa.m implements the class-specific module
based on pdf_spa.m.

function [z,qout]=module_ceps_spa(x,qin,P,N);

% determine number of segments
nsamp=length(x(:));
M=floor (nsamp/N) ;
if (nsamp “= M*N),
error(’Length of data not divisible by DFT size’);
end;

% Here we compute the spectrogram.
y=abs(specgram(x(:),N, [],ones(N,1),0))."2;

[n,Ml=size(y);

times = [0:N/2]7;

5.6. LARGEST K DFT BINS o7

C=cos(times*(2*pi/N)*[0:P]) .* repmat([1;2%ones(n-2,1); 1],1,P+1);

% compute ACF
z=C’ * log((2/N)*y);

if (nargout < 2),
return
end;
if("all(size(qin)==[1,1])), error(’qin wrong size’); end;

for i=1:M,

1pxHO = -N/2*log(2*pi)-sum(x(1+(i-1)*N : ixN)."2)/2;
1pzHO = pdf_spa(z(:,1),C,4,[1);

gout (i)=qin/M+1pxHO-1pzHO;
end;
return

5.5.6 Simulation

To test the approach, values of log p(z|H1) were computed using the reverse
chain rule (3.16). Thus, we used the form

log p(z|Hy) ~ log p(x|Hy) — log Q. (5.16)

These values were compared with a Gaussian Mixture approximation esti-
mated from 1000 samples of cepstrum data generated under the WGN hy-
pothesis. The results are sown in Figure 5.3 and show very good agreement.

5.6 Largest K DFT bins

A very useful set of statistics are the order statistics (such as largest 5 bins)
from a DFT.

5.6.1 Features and Region of Sufficiency

For features, we propose the set

22 92. 2. 2 .
z = [p; poaii1aziz - - - axiKl,

58 CHAPTER 5. EXAMPLES

-13

u,

-14 g™ i

-15

| |
= =
~ =)
i

log ?(ZIHO) (SPA)
&
1

-19 . il

-22 ! L L L 1 | | |
-22 -21 -20 -19 -18 =17 -16 -15 -14 _13
log p(z|H,) (Gaussian Mixture)

Figure 5.3: Comparison of PDF estimate using reverse cain-rule with Gaus-
sian Mixture.

5.6. LARGEST K DFT BINS 59

where ay, iy, are the amplitudes ans bin indexes of the top K bins in a band
with index range [imin, imax]- Also, (07, p?) are the in and out band energies,
i.e. the total energy in the band (less the K bin powers) and out of the
band. For #H,, we include any PDF consisting of itd Gaussian noise plus K
sinusoids. The sinusoid phase is regarded as a nuisance parameter.

5.6.2 Reference Hypothesis

The reference hypothesis Hy(z) is Gaussian process with power equal to the
inband power:

o2 = p;
(nin — K)N’

where N is the DFT size and n;, is the total number of bins in the band
(powers are referenced to the DFT input). The idea for creating a reference
hypothesis is to build a template of average bin power at the DFT output.
This is a constant with value No? both in and out of band. This template
is denoted by y,.

5.6.3 Input PDF

The input PDF we desire is already given in section 5.2.2.

5.6.4 Output PDF
The output PDF has the factorization

pz(Z|H0(Z)) = pz({akaik}apiznap(2)ut|H0(z))
= p({ak}’piQnapgutHik}aHO(z)) p({Zk}|H0(Z))
= p({ar}, pfal{ix}, Ho(2)) p(pgus| Ho(z)) p({ix}| Ho(z))

= p({ar}|Ho(z)) p(pi|Ho(2)) p(p2.|Ho(z)) p({ir} Ho(z))

where in the third line we used the independence of the in and outband fea-
tures, and in the fourth line we say {ay}, pi2n are approximately independent
of each other and of the bins {i; }. We assume {7} are uniformly distributed
under Hy(z) and p2,, p2,, are x> with the apropriate number of degrees of
freedom (DOF). We assume p({ax}|Ho(z)) follows the usual PDF if order
statistics for exponentially distributed RV (equations are given in Section
IT.A of [21].

60 CHAPTER 5. EXAMPLES

5.6.5 Software

In the software listing below, the input PDF from equation 5.2.2 is encoded
as function pdf _fftmsq.m and the PDF for the order statistics (of exponen-
tial RVs) is encoded as function hOc .mex, which is a hodge-podge of different
PDF functions. The calling syntax is 1p = hOc(t , 299, parm); where
t is the feature vector dimensioned nsamp-by-dim (dim being the number
of features equal to 2*K+2), 299 is the PDF type of the order statistics, and
parm is a row vector of parameters equal to parm= [K [(n_in-K+1) :n_in]
n_in], where n_in is the number of in-band bins (n_in=istop-istart+1.

% Inputs the FFT-magnitude squared. Selects the highest

% NBINS bins in the range istart to istop. If not supplied,

% istart istop are assumed to be 2 and NFFT/2, leaving only

% bins 1 and NFFT/2+1 (the real=-valued bins) as the

% out-of-band bins. It supplies as output features the bin values

% of the highest NBINS bins, their indexes, and the remaining energy.
% The remaining energy is the total event energy less the energy in

% the highest NBINS bins. The remaining energy is divided into

% the in and out of band energies (i.e. inside the seach range

% or outside). Let the input data y be of size (NFFT/2+1)-by-M,

% then the ouput feature vector =z is of dimension DIM-by-M

% where DIM = NBIN*2+1. The features are:

)

% BIN1 value

% BIN2 value

% :

% BIN[NBIN] value

% ’rest’ energy - inband
% BIN1 index/NFFT

% BIN2 index/NFFT

oo

% BIN[NBIN] index/NFFT

% ’rest’ energy - outband

h

function [z,pout,variance]=module_bestkfft(y,pin,NBIN, istart,istop);
[n,n_samples]=size(y);

NFFT = (n-1)*2;

% default band index range

5.6. LARGEST K DFT BINS 61

if (nargin < 5),
istart=2;
istop=NFFT/2;

end;

assert (NBIN < istop-istart & NBIN <= 20);
% Get the top bins
[ys,is]=sort(y(istart:istop,:));

ys= ys(end-NBIN+1 : end,:);

is=is(end-NBIN+1 : end,:)+(istart-1);

% get the "rest of the energy" inband and outband

y_out = sum(y([[1:istart-1] [istop+1l : nll,:), 1);
n_out = istart-1+n-istop;
y_in = sum(y(istart:istop,:),1) - sum(ys,1);

n_in = istop-istart+i;

% estimate the variance of the noise at input to FFT
var_in = y_in/(n_in-NBIN) /NFFT;
var_out = y_out/n_out/NFFT;

% create feature vector
z=[ys; y_in; is/NFFT; y_out];

% Use white noise with the variance "var_in" as a reference hypothesis "Hz"
yz=ones(n,n_samples) ;
for ii=1:n_samples,
yz(:,ii) = var_in(ii)*NFFT*ones(n,1);
end;
lpyHz = pdf_fftmsq(y,yz,NFFT);

lpzHz=zeros(1,n_samples) ;
for ii=1:n_samples,
1pzHz(ii) = hOc((2/NFFT/var_in(ii))*ys(:,ii)’,
299, ...
[NBIN [(n_in-NBIN+1):n_in] n_in])
NBIN*log(2/NFFT/var_in(ii))
chisq(y_in(ii) ,2*(n_in-NBIN) ,NFFT/2%var_in(ii))
chisq(y_out(ii),2*n_out ,NFFT/2*var_in(ii));

+ + +

62 CHAPTER 5. EXAMPLES

end;

% the uniform PDF of the indexes
lpzHz = lpzHz - NBIN*log(n_in/NFFT);

assert(size(pin)==[1 n_samples]);

pout=pin+lpyHz-1pzHz;
variance = var_in;
return

function 1l=chisq(t,N,r);
1 = -log(r)-gammaln(N/2)-(N/2)*log(2)+(N/2-1)*log(t/r) - t/(2*r);
return

5.7 Normalized Matched Filter

Let us use form (3.16) to find the PDF under the WGN hypothesis (here
denoted H;) for a normalized matched filter (a statistic following the t-
distribution). The procedure to devlop the Q-function is the same as before.
Let x be an N x 1 data vector. Let

b= XV (5.17)

where x is an N-by-1 data vector and w is fixed a pattern vector which
satisfies
!
ww=1,

and a is a real amplitude parameter. Under the WGN hypothesis, the exact
PDF of z is known. Let

(N-1)22 (N -1)(x'w)?
1—22 x'x—(x'w)?’

u =

Then, u has the F(1,N-1) distribution. It is straight-forward to obtain the
exact distribution of z by change of variables. We will use the exact distri-
bution later as a check. Note that whereas the exact distribution is known
for a scalar normalized statistic, it is not available in general. In contrast,
the method we employ is easily extended to higher dimension. We attack
the problem by considering the processing in two stages and apply the chain
rule.

5.7. NORMALIZED MATCHED FILTER 63

5.7.1 Stage 1
Features and Region of Sufficiency

Let the PDF of x be parameterized by the parameters a and o2,

pe(x;0,0%) = (2m0?) "2 exp {—%(x —aw)'(x — aw)} . (5.18)

A sufficient statistic for the parameters is the statistic
_ - x'w
Y =1 Y2 = N1—1 (x’x _ (x'w)Q)

Clearly, the elements of y are unbiased estimates of a and 02, and it may be
shown that they are independent. It should be clear that the set of PDFs
for which y is sufficient, denoted by #,, is the set of PDFs of form (5.18).

Reference Hypothesis

We must find a reference Hy(y) which lies in H,. We could use a fixed hy-
pothesis (WGN) because we can solve for the PDF of x and y exactly. How-
ever, it is more instructive to demonstrate the power of the data-dependent
hypothesis. By positioning Hy(y) near y, we can use the CLT. We form
Hy(y) from y as follows:

Ho(y): a=vy;, o=y

Input PDF
We have

Pe(x[Ho(y)) = pa(x;0 = y1,0° = y2).
Output PDF

Note that yo has mean o2 and variance 20%/(N — 1). Using this CLT ap-
proximation and combining with the Gaussian PDF of y;, we obtain this
PDF for y:

py(yia,0?) = (2m02) V2 exp{—ghr(y —)2} (422b)
exp { - 45 (1 — 0?)2}

We let
py(yi Ho(y)) = py(y;a = y1,0% = y2).

64 CHAPTER 5. EXAMPLES

Software Module

function [y,qout]=module_mfl(x,qin,w)
N=length(x);

% Compute y

XX=X’*X;

XW=X’*Ww;

y=[xw (xx-xw"2)/(N-1)]’;

% Compute Hy

1pxHy= -N/2%log(2*pixy(2))-.5%(x-y(1)*w) > *(x-y(1)*w)/y(2);

mean_y=[y(1); y(2)];

var_y=[y(2); 2xy(2)~2/(N-1)];

lpyHy = -log(2*pi)-.5*sum(log(var_y))
-.5%((y-mean_y) ./var_y) ’*(y-mean_y) ;

qout = qin + lpxHy - lpyHy;
return
5.7.2 Stage 2
Features and Region of Sufficiency
In the second stage, we let

Y1
)
(N — 1)y +y?

z =

which clearly is the same as (5.17). The set of PDF's for which z is sufficient,
denoted by # ,, is not obvious. Since z is normalized and invariant to scaling,
the power is not observable. Thus, z can optimally distinguish Hy only from
a set of hypotheses withn a constained set. We define H, as the subset of
H, in which we constrain

H,: a’>+ No’=N, (5.19)

so that the total energy is constrained to be N. Note that Hj is contained
therein.

5.7. NORMALIZED MATCHED FILTER 65

Reference Hypothesis

We form the hypothesis H|(z) so it is “close” to z. We assume that

Hiz): o2=1-2° a,= zV/'N.
It is easily shown that that H{(z) meets two conditions. First, the expected
value of z under H{(z) will be z itself. Second, it is contained within H,.
Input PDF
Using (5.7.1), we let

py(y;H(')(z)) :py(Y§a = azaa2 = Ug)-

Output PDF

We approximate the PDF by the CLT. Since the denominator has a large
bias relative to its variance, the variance of z is primarily due to the numer-
ator and the denominator has only the effect of scaling. Accordingly, the
mean of z is approximately

F=E(z) ~ ——

"~ V/No? + a2

and the variance is)

& ((z - 2)2) o~ m.
Thus,

(z;a,0%) ~ 2o o exp | — Nooto (Z - ——)2
PREZEGT) =\ N2 ¥ a2 P 202 VNo? +a?
(5.20)

Software Module

function [z,qout]=module_mf2(y,qin,N);

% Compute z
z=y (1) /sqrt ((N-1)*y(2)+y (1) ~2);

% Compute hypothesis Hz
s2z=(1-z"2);

66 CHAPTER 5. EXAMPLES

az=sqrt (N) *z;

my=[az; s2z];

vy=[s2z; 2%s2z~2/(N-1)];

lpyHz = -log(2*pi)-.5*sum(log(vy)) -.5*((y-my)./vy) ’*(y-my);

Sz=s2z/(s2z*N+az"2) ;
lpzHz = -.5%log(2*pi*Sz);

qout = gin + lpyHz - 1lpzHz;
return

5.7.3 Simulation.

To test the approach, values of log p(z|H1) were computed using the reverse
chain rule (3.16). Thus, we used the form (5.16). These values were com-
pared with the exact solution which was obtained from the F-distribution
as follows:

function 1lpzHO = exact_mf_pdf(z,N)

% compute exact PDF of z under WGN
u=(N-1)*z~2/(1-z"2);
z2=2"2;
jacobian=(N-1) *abs ((2*z* (1-22)+2*z*2z2) /(1-22) "2);
pu=f_pdf (u,1,N-1);
1pzHO=log(pu)+log(jacobian)-log(2);
return;

Values of log p(z|H1) were generated using N = 64 for both methods. Data
was generated using “a” chosen randomly in the range [-v/N,+/N], with
02 determined from “a” using (5.19). A code segment showing how this was

done is provided below:

% Choose amplitude at random
a= sqrt (N)*(rand-.5) *2;

% Constrain power s2 so that a"2+N*s2 = N
s2=(N-a"2)/N;

% create data

5.7. NORMALIZED MATCHED FILTER 67

x= a*w + randn(N,1)*sqrt(s2);

% optionally normalize
hx=x/sqrt (x’*x)*sqrt(N) ;

[y,qout]=module_mfl(x,0,w);
[z,qout] =module_mf2(y,qout,N);

1pxHO= -N/2%log(2*pi)-.5%x’*x;
1pzHO = 1pxHO - qout;

1pzHO_exact = exact_mf_pdf(z,N);

plot (1pzHO_exact,1pzHO-1pzHO_exact,’mo’); hold on

The results are shown in Figure 5.4 and are quite interesting. The graph
plots the error between the exact and approximate PDF from (5.16). In the
figure, circles represent the difference between the approximation and the
exact log-PDF, with the exact log-PDF plotted on the abcissa. Note that
the errors are quite small, even in the far tails (e °°). Approximation error
appear to increase in the tails linearly with log-PDF. The dots were created
by re-running the experiment using normalized data (the input data vector
was normalized to have a total energy of N).

68 CHAPTER 5. EXAMPLES

0.5 a
¢) o o
O
Q
or o @C@OC@,. - i
5 (¢] fe) - [©) (@
= ® © .o
- (@) O
i o s O
IS @) o e (8 o ©
i))\
® 05O ©0 e} ,p'OOO i
(@)
£ o o o :
3 o . O
g o
< @) o
-1+ o %O -
-
e %4
O
-15F . =
2 | | | | |
-50 -40 -30 -10 0

-20
Theoretical log-p(z|H,)

Figure 5.4: Approximation error for the chain-rule method
with theoretical PDF (N = 64).

10

as compared

Chapter 6

Statistical Models

An important part of classifier design is choosing a statistical model for
the feature PDF estimate, i.e p(z;|H;). Different statistical models may be
used for each class. We present here two of the most important methods:
Gaussian Mixtures and HMM.

69

70 CHAPTER 6. STATISTICAL MODELS

6.1 PDF Estimation using Gaussian Mixtures

This section is concerned with the general PDF estimation problem. Let
p(z) be the PDF of z which must be estimated from training samples. If
p(z) is continuous, it may be approximated to arbitrary accuracy by any
kernel-based estimator [27], such as the method of Gaussian Mixtures (GM)
[28] given enough terms.

6.1.1 Gaussian Mixtures and the E-M Algorithm
The GM form of the PDF for z € RY is given by

L
p(z) =) o N(z, s,) (6.1)
i=1
where
N(a iy i) = (2m) 72 2 exp {5 (-) B (2w}

The GM parameters are denoted A = {w;, p;, 2;}. The most commonly
used method for finding the maximum likelihood estimate of the parameters
from a training set is the E-M algorithm [28]. Given a starting-point for A,
the update equations are provided in Table 3. The algorithm has been
generalized to allow the inclusion of data weights -y, such that the quantity

Q=>_m log N (zk, p;, =)
P

is maximized. These weights will be useful in joint model estimation and
may be assumed constant (7 = 1) if not used. The algorithm in Table 3,
while correct, is representative only. Actual computation requires careful
attention to numerical issues which are discussed below.

6.1.2 Implementation Overview

In the sections that follow, we discuss the subtleties associated with prac-
tical implementations of the E-M algorithm. We also discribe a com-
plete MATLAB library for training, evaluating, and visualizing PDF’s of
high dimensions. The Gaussian mixture parameters are organized into
a structure. The GPARM structure for feature dimension DIM with
NMODES modes has the form shown in Table 4. To illustrate the use

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 71

Repeat until convergence:
1. Compute data weights. For i =1,...,L:
a; N(zk, pis i) i

L
Do ai N(zkp;, i)
i=1

Wik =

)

2. Fori=1,...,L let:
N
OL; = Zwi,k.
k=1

3. Update the means. Fori=1,...,L:

N
1
M = — E Wik Zk-
@;
k=1

4. Update the covariances. For i =1,..., L:

N
1

3= o Z ik (2k — 1) (26 — 1;)"-
i =1

5. Condition the covariances. There are two methods for doing this, the BIAS
and CONSTRAINT methods. The following is the BIAS method: For ¢ =
1 L:

ey

{Ei}n,n = {Ei}n,n + pi, n=1...,P,

where p,, is the assumed measurement standard deviation for the n-th element
of feature z. The addition of this a priori information about the feature serves
to prevent the covariance matrices from becoming singular. These constants
p2 must be chosen carefully. The topic will be discussed in detail in section
5.3.4. The CONSTRAINT method is described therein.

6. Update mode weights. For i =1,...,L:

!
@

a; = =N -
Zk:l Yk

Table 6.1: Update Equations for Gaussian Mixtures. This is representative
only. Actual implementation requires attention to numerical issues discussed
in the text.

72 CHAPTER 6. STATISTICAL MODELS

Table 6.2: GPARM structure definition

of the structure in MATLABS, if 'gparm’ is the name of the Gaussian mix-
ture parameters, then the mixing weight of the third mode is accessed as
gparm.modes (3) .weight. A vector containing all the weights us created as
follows: wts = [gparm.modes.weight]’, whereupon wts is a NMODE-by-
1 vector of mixing weights. The meaning of each parameter in the structure
will be described. The correspondence between the mathematical symbols
and the MATLAB variables are tabulated in Table 5. Some of these sym-
bols are already defined. The rest will be defined later. The E-M algorithm
of Table 3 is implemented by subroutine gmix_step.m, however training is
more involved than just calling gmix_step.m repeatedly. The subtleties are
described in the following sections. In the software, the subroutine train.m
handles the details.

To illustrate the PDF estimation problem, we will use some 3-
dimensional features from a mysterious source. Samples of the feature
vector z = {z1,29,23} were used as training data and were stored in
variable datal. Each column of the matrix stores the samples of a different
feature. The following code segment implements the training and displays
the resulting PDF in a density plot.

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 73

Parameter Name Mathematical Symbol or Description
i€[l...L], ne[l...P]
GM Parameters
DIM=length(gparm.features) P
NMODES=length(gparm.modes) Number of GM components, L
gparm.modes(i).weight o
gparm.modes(i).mean Wi
gparm.modes(i).cholesky_covar R;
gparm.features(n).min_std Pn
gparm.features(n).name Feature Name
Other Variables
N Number of input samples, N
data Training data, z
data_wts Data weights

Table 6.3: Table of correspondence between MATLAB variables and math-
ematical symbols used in the text.

NMODE=10;
min_std = [20 20 1.0];
names = {’Z1’,°Z2?,°Z3’};

gparml = init_gmix(datal,NMODE,names,min_std);
for i=1:100,
[gparml,Q] = gmix_step(gparml,datal);
fprintf (*%d: Total log-likelihood=%g\n’,i,Q);
end;
gmix_view2(gparml,datal,1,2);

Refer to table 5 for symbol names. The variable names is a cell array that
stores the feature names for use in visualization plots. The variable min_std
stores the minimum feature standard deviations. The routine init_gmix.m
creates an initial set of parameters. In simple problems, the mixture can be
trained by repeated calls to gmix_step.m as shown. In more difficult prob-
lems, it is necessary to do more to insure that there are the right number
of modes and that the algorithm is converging properly. A representative
MATLAB program for training is gmix_trainscript.m, which in turn calls
gmix_step.m, the subroutine that actually implements the E-M algorithm.
We will discuss the use of gmix_trainscript.m in more detail in the fol-

74 CHAPTER 6. STATISTICAL MODELS

lowing sections. Results of running the above code segment are shown in
Figure 8. Visualization is accomplished by gmix_view2.m for any desired 2-
dimensional plane. A routine gmix viewl.m is also available for projecting
on one axis using a histogram. We will describe a complete example in more
detail in section 5.5.

Before iterating, a starting point is needed for the GM parameters. This
is handled by init_gmix.m. This routine inputs some samples of data vec-
tors z1,...,zy, the number of GM terms to use (L), the covariance condi-
tioning parameters p,, and the names of all the features. The GM compo-
nent means p; are initialized to randomly selected input data samples. The
covariances are initialized to diagonal matrices with large variances. It is
important to use variances on the order of the square of the data volume
width | max(z) — min(z)|?. The size of the variances at initialization deter-
mines the data “window” through which each GM component “sees” the
data. Too small a window at initialization can lock the algorithm into the
wrong local minimum of the likelihood function. The initial weights «; are
set to be all equal.

There are two approaches to determining the number of modes. The
first is to sprinkle a large number of modes throughout the data volume and
remove the weak or redundant ones as it converges. The second approach
is to start with just one mode and add modes as needed. The way you
determine if a new mode is needed (by splitting an existing mode) is by a
skew or kurtosis measure (kurt.m). These two methods, called top-down
and bottom-up, respectively will be covered in section 5.4.

6.1.3 Implementation of the E-M algorithm : gmix_step.m
Working in the log-domain.

Since probabilities can become extremely small, it is necessary to remain in
the log-domain. Staying in the log-domain is a problem when summations
are required. Let [; = log N (z, p;, X;). The summation

L
log S = log lz a; exp(li)]
=1
which appears in the first step of the E-M algorithm should be implemented
L
as logS =M + Z a;exp(l; — M), where M = max; [;.

=1

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 75

300 q
300
o

z2_
z:

250 . . 4 250

200

‘]
-0 60 -40 -20 0 20 40 60 80 -150 -100 -50 0 50 100 150

-80 -60 -40 -20 0 20 40 60 80 -150 -100

L L L L
-150 -100 -50 0 50 100 150

-150 -100 100 150

Figure 6.1: Results of PDF estimation for the 3-dimensional feature vector
z = {z1,29,23}. Data and PDF’s are projected on the (z1,22) plane. The
three cases are for 12, 100, and 500 training samples. The final number of
mixture components (L) was 1, 6, and 8, respectively.

76 CHAPTER 6. STATISTICAL MODELS

Using the Cholesky Decomposition of X;.

Instead of computing X; directly, we store the Cholesky decomposition of
3; computed using the QR decomposition. Consider a matrix of column
vectors X = [x1,X2,...,Xn]. These columns correspond to the vectors
(z, — p;) in Table 3. A covariance estimate is obtained by forming the
matrix ¥ = %XX’ , which may be verified is the same as computing the
elements of 3 as follows:

1 N
i =N D Thi T
k=1

But note that if you take the QR decomposition X' = QR, that

1 1 1
= _-XX'=—-R'QQR = —-R'R.
N N QQ N
Thus, we see that the QR decomposition of X' is related to the Cholesky
factor of 3. There is no reason to ever compute X explicitly. Computing X
requires twice the number of bits of precision as R. A quadratic form can
be computed using R as follows:

25z = [ly||*

where
y =2z'RL.

This convention is used in the software (gmix_step.m). More precisely, the
matrix tmpidx stores X’ where the rows of X' are (z; — p;). The QR decom-
position of tmpidx is R, which is stored as a parameter. The subroutine for
computing log N (zg, p;, ;) is lqr_eval.m. This routine inputs z1,...,2zxy,
u;, and R;. The mixture (14) is implemented by subroutine lqr_evp.m.

Choosing the covariance constraints

If the quantization or additive measurement error variance is known for each
feature, this can be used as a guide for choosing the covariance constraints.
But, it can somewhat subjective if nothing is known about the data. A
good idea of what to use for p, may be obtained by observing the data on
2-dimensional projections. You should select p, consistent with the width
of the smallest visible cluster of data. For example, by looking at the top
of Figure 10, p; and py would be estimated by taking cross-sections of the
visible data clusters along the X and Y axes, respectively. In the bottom of

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 7

Figure, we see the result of choosing p,, too large (note the width of the small
Gaussian mode is larger than the width of the corresponsing data cluster).
It may be necessary to view the data in all possible 2-D projections before
a decision can be made.

Conditioning the Covariances

Conditioning the covariances is accomplished without explicitly computing
33; as well. As mentioned in Table 3, step 5, there are two methods, the BIAS
and CONSTRAINT methods. The BIAS method is simpler. On the other
hand, the CONSTRAINT method delivers a better PDF estimate because
the covariances are not biased and appears to converge faster. But, it may
interfere with the monotonic increasing property of the E-M algorithm, i.e.
that the total log-likelihood always goes up, but this is still an unresolved
issue. Both methods are based on the idea of independent measurement
error in the elements of z. Let A be a diagonal covariance matrix with
App = p2. The two methods differ in how they regard A. The BIAS
method assumes A is an a priori estimate of X, while the CONSTRAINT
method assumes A is a measurement error covariance.

The BIAS method is implemented by adding A to the newly formed
covariance estimate. But, because we do not work with ¥ directly, it is
necessary to implement the conditioning as follows: Let X' = QR. The
upper triangular matrix R is retained and Q is discarded. Next, we form
the matrix as shown below for the case P = 3:

Tl Ti2 T13
0 7o 793
R 0 0 T33
R* = ...
diag(py) pr 0 0
0 p2 O
| 0 0 p3

It may be verified that R*R* is the same as X; with the diagonal ad-
justments. Next, the QR-decomposition of R* is computed and the upper
triangular part is stored.

The CONSTRAINT method assumes that ¥ = Xy + A where X is
an arbitrary covariance. Let the eigendecomposition of ¥ be & = VS?V'.
Clearly, then

S?2 = V'S,V + VAV.

78 CHAPTER 6. STATISTICAL MODELS

Thus, the diagonal elements of S can be no smaller than the square root of
the diagonal elements of V'AV. Note that V and S may be obtained from
the SVD of the Cholesky factor of X:

> =R'R,

and
USV’' =R.

It is implemented in this way in gmix step.m (tmpvar corresponds to R):

[U,S,V]=svd(tmpvar,0);

S = diag(S);

S = max(S,sqrt(diag(V’ * diag(minvar) * V)));
tmpvar = U * diag(S) * V’;

[q,tmpvar] = qr(tmpvar,0);

where the last two steps re-construct R, then force it to be upper triangular.
Consider the following example. Data was created using a mixture of 2
Gaussians using the code segment below:

h

% produce data that is from two Gaussian populations
yA

fprintf (’Creating data : ’);
N=4096;

meani=[2 3]’;

covi= [2 -1.6; -1.6 2];
mean2=[1.3 1.3]°’;

cov2= [.005 0; O .005];

x1 = chol(covl)’ * randn(DIM,N);
x1=x1+repmat (meani,1,N);

x2 = chol(cov2)’ * randn(DIM,N);
x2=x2+repmat (mean2,1,N) ;

datal = [x1 x2];

Next, a GM parameter set was initialized with 2 modes with random starting
means. Next, gmix_step.m was iterated 50 times using the BIAS and the
CONSTRAINT method. This experiment was repeated 9 times. In each
trial, the same starting point was used for both methods. The results are
plotted in Figures 9 and 10. Note that the BIAS method has covariances

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 79

x 10

-0.85F
CONSTRAINT(—————-

_0.9 L

-0.95[

Log Likelihood
|
AN

-1.05f

_1.1 L

-1.15F

_12 1 1 1 1 1 n P n n n " " " PR
10 10 10
Iteration Number

Figure 6.2: Convergence performance of the BIAS and CONSTRAINT
methods. The CONSTRAINT method is consistently faster and achieves
a higher log-likelihood every time.

80 CHAPTER 6. STATISTICAL MODELS

101 B

TIME

TIME

TIME

ENGY
Constraint

TIME

ENGY

Figure 6.3: Typical results of training using the BIAS (left) and CON-
STRAINT (right) methods. Each method used p, = 0.5. Note that for
the BIAS method, the covariance of the large mode is too fat, but for the
CONSTRAINT method it is correct. For the small mode, the mode size is
much smaller than p,, and therefore both methods produce similar results,
as would be expected.

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 81

that are biased and appear somewhat larger than necessary. In every case,
the CONSTRAINT method converged faster and achieved a higher log-
likelihood.

6.1.4 Training

Before training can occur, the GM paremeters must be initialized with a call
to init_gmix, which was described in section 5.2, where we discussed two
approaches to training. The top-down approach and bottom-up approaches
are implemented simply by defining either a large number of modes or else
just one mode, respectively. The number of modes is specified by in the
arguments of init _gmix.m. But, training is more involved than just re-
peatedly calling gmix step.m. Training involves five operations that are
handled by gmix_trainscript.m:

1. E-M algorithm (gmix_step.m), sections 5.1,5.3.

2. Pruning modes (gmix_deflate.m), section 5.4.3.

3. Merging modes (gmix_merge.m), section 5.4.4.

4. Splitting modes (gmix_kurt.m), section 5.4.5.

5. Determining if algorithm has converged, section 5.4.6.

The operations are discussed in the indicated sections. An overall training
script (gmix_trainscript.m) is discussed in section 5.4.7. The user has
some control over some parameters used in training. In addition to the
initial number of mixture modes, there are five other parameters that affect
the training over which the user has some control.

1. The covariance constraints p, (and selection of BIAS or CON-
STRAINT method).

2. The minimum mode weight used in pruning modes.

3. The threshold used to determine if two modes should be merged.
4. The threshold to determine if a mode should be split.

5. The criterion for determining if convergence has occurred.

These parameters correspond directly to the five steps outlined above and
are discussed in the indicated sections.

82 CHAPTER 6. STATISTICAL MODELS

Determining the number of modes.

As we have stated, training can start with a large number of modes or just
one mode. If the number of modes is too high, modes will be pruned out as «;
falls. If the number of modes is too low, modes will be split by gmix kurt.m.
Once the number of modes settles out and the likelihood stops increasing,
convergence is declared.

The maximum number of modes to start with is about N/(4P) where
P is the dimension and N is the number of samples. If all the modes
“share” the data equally, that is 4P samples per mode, a bare minimum. It
is generally not problematic if the number of modes is over-specified since
covariance estimates are stabilized by the conditioning discussed in section
5.3.4. And, as long as the amount of training data can support the number of
modes chosen, the approximation is good. The mixing weight of a mode («;)
multiplied by the number of input data samples N determines how many
input data samples are effectively used to estimate the mode parameters.
This is a simple measure of the “value” of each mode. As long as this
product is high enough, the mode is estimated accurately. If a; falls too
low, the mode is eliminated or combined with another. With a combination
of covariance constraints, pruning, merging, and mode splitting, a good PDF
approximation can be obtained reliably.

E-M algorithm (gmix_step.m)

The E-M algorithm is explained in section 5.3. The calling syntax for
gmix_step.m is as follows:

[gparm,Q] = gmix_step(gparm,x, [bias],[data_wts]);

where gparm are the input parameters, x is the normalized input data, bias
(optional) is set to 1 for BIAS method and 0 for CONSTRAINT method, and
data wts (optional) allows individually weighting input data. On return, Q
is the total log-likelihood.

Pruning (gmix_deflate.m)

Pruning is killing weak modes (a mode is another name for one of the L
mixture components). A weak mode is found by testing «; to see if it falls
below a threshold. We have mentioned that Na; is a measure of how many
samples are “used” by mode 7. To keep this quantity above kP, we require
a; > kP/N. The quantity kP is called SAMPLES_PER_MODE, or S P Min
the software. A good choice for k is about 4.

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 83

Pruning is handled by gmix _deflate.m. This program keeps bumping
off the weakest mode and re-normalizing o; so that), a; = 1. The calling
syntax for gmix deflate.mis

gparm = gmix_deflate(gparm,min_weight_1,min_weight_all)

It is important that very weak modes be obliterated immediately, but it is
important not to massacre lots of moderately weak modes all at once. So,
there are two input thresholds. Only one mode per call to gmix_deflate.m
can be bumped off if it falls below min weight_1. But a mode is always
bumped off if it falls below min_weight_all.

Merging Modes (gmix merge.m)

Merging is creating a single mode from two nearly identical ones. The close-
ness of two modes is determined by mode_dist.m which works as follows.
Let there be two PDF’s p;1(z) and pa(z). Let there be a collection of points
denoted z; € X; near the central peak of p;(z) and a collection of points de-
noted z; € Xy near the central peak of pa(x). Then we define the closeness

metric
II pe(xi) T po(z)

d = T, €X1 z;EXo

I pile) T pel=)

T;€X1 T;€EXo

Notice that this metric is unity when p;(z) = p2(z) and less that unity when
p1(z) # po(z). Since I use the log of d, the answer is always negative. A
threshold (usually about -1) is used to determine if the modes are too close.
This threshold should increase (become more negative) as the dimension
goes up.

Since p1(z) and po(z) are just two Gaussian modes, it is easy to know
where some good points for X; and Xy are. We choose the means (centers)
and then go one standard deviation in each direction along all the princi-
pal axes. The principal axes are found by SVD decomposition of R (the
Cholesky factor of the covariance matrix). This is illustrated in Figure 11
for a Gaussian mode of dimension P = 2. There is a center point and two
points per dimension. Therefore there are 2P + 1 points per mode, and two
modes, thus 4P + 2 points.

If two modes are found to be too close, they are merged. Merging is
forming a weighted sum of two modes (weighted by a1, a2). The new mean
is thus

a1y + Qophy

_ Q1Hy T X2fy 6.2
7 o T (6.2)

84 CHAPTER 6. STATISTICAL MODELS

Figure 6.4: The 5 summation points for a 2-dimensional mode. Contour at
20.

The proper way to form a weighted combination of the covariances is not
simply a weighed sum of the covariances, which does not take into account
the separation of the means. You need to be more clever. Consider the
Cholesky decomposition ¥ = R'R. It is possible to consider the rows of
v/P R to be samples of P-dimensional vectors whose covariance is X, where
P is the dimension. The sample covariance is, of course +(v/P)? R'R = X,
Now, given two modes to merge, we regard VP R; and vP Ry as two
populations to be joined. The sample covariance of the collection of rows is
the desired covariance. But this assigns equal weight to the two populations.
To weight them by their respective weights, we multiply them by ,/—*

aita2
a2
a1 +asz

they are re-referenced to the new central mean. Here is a summary of the
method:

1. Let p be as in (15).

and . Before they can be joined, however, they must be shifted so

2. Let R; be the Cholesky factor of 3;, 1 =1, 2.
3. Let C; = VP R,;, each 1.
4

. Add the vector p; — p to each row of C;, each .

5. Multiply C; by /495, each i.

6. Form

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 85

7. Then the new covariance is 3 = % C'C, or take the QR-decomposition
of C/v/P as the Cholesky factor of the new covariance.

The above algorithm is implemented by merge.m. The subroutine that it-
erates over all the pairs of modes and calls merge.m and mode dist.m is
gmix merge.m. The calling syntax for gmix merge.m is

gparm = gmix_merge (gparm,max_closeness)

A good choice for the max_closeness threshold is about -1.0 times the PDF
dimension.

Splitting modes (gmix kurt.m)

In a method proposed by N. Vlassis and A. Likas [29], the number of modes
in a Gaussian mixture is determined by monitoring the weighted kurtosis for
each mode. Putting their equation for one-dimensional z in our notation,
Vlassis et al define

4
e ()

N

Ki =

where

We ;= N(Znalj’iazi)
ng —
ET]:]::L N (2n, pi, 2i)

If |k;| is too high for any mode i, they split the mode into two. We mod-
ify this for higher dimension and use the skew in addition to the kurtosis.
Extending to higher dimension is done by projecting each data sample zj,
onto the j-th principal axis of ¥; in turn. Let zfm- 2 (2, — 1;)'vi; where
v;; is the j-th column of V, obtained from the SVD of 3; (see discussion in
section 5.4.4). Thus, for each j,

1. Let
N sz !
Kij = N -3
, En:l wn,i
2. Let
N 2 \°
n,t
don=1 Wnyi\ —5,
Yij =

N
En:l wn’i

86 CHAPTER 6. STATISTICAL MODELS

3. Let
mij = |Kij| + il

where)
N .
9 >on—1Wn,i (me)
Si = N
Now, if m; j > 7, for any j, split mode 4. Split the mode by creating modes
at

B= pi +vi;Si
and

K= B = VijSi
where S; ; is the j-th singular value of 3;. The same covariance ¥; is used for
each new mode. Of course, the decision of whether to split or not depends
on the mixing proportion a; as well. No splitting occurs if ; is too small.

In the following example, we create data with a gap in it. We begin

iterating with a single mode. The kurtosis/skew algorithm above is able to
assign modes until it is finally happy after 8 modes (Figure 12). The calling
syntax for gmix kurt.m is

gparm = gmix_kurt(gparm,x, [kurt_thresh], [debug]);

The optional threshold parameter (default=1.0) allows control over splitting.
A higher threshold is less likely to split. The optional debug parameter, if
set to 1, will print out kurtosis and skew information.

Convergence

A good way to monitor the algorithm to detect convergence is to maintain
a history list of the last few values of (). If there is no improvement in @)
for the duration of the history list, terminate the training.

Training script (gmix trainscript.m)

The script gmix_trainscript.m may be used with the simple syntax:

gparm=gmix_trainscript (gparm,data,MAXIT);

where gparm is the GM parameter vector, data is the N-by-P input data
vector, and MAXIT is the maximum number of iterations allowed. For added
control, additional parameters may be added using the syntax

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 87

400 T T T T T T T T 400 T T T T T T T T
350 350
300 300
N‘ N‘
N,250 N, 250
200 200
150 1 150
-150 -100 50 0 50 100 150 200 -150 -100 50 0 50 100 150 200
71 71
400
350
300
N‘
N,250
200
150
<150 -100 50 0 50 100 150 200 <150 -100 50 0 50 100 150 200
i i
400 T T
350
300
N‘
N, 2501
200
150

-150 -100 -50 0 50 100 150 200

-150 -100 -50 0 50 100 150 200

Figure 6.5: Results of bottomm up PDF estimation. One mode (left), two
modes (center), and after convergence at 8 modes (right).

88 CHAPTER 6. STATISTICAL MODELS

gparm=gmix_trainscript (gparm,data,MAXIT,SAMPLES_PER_MODE, BIAS,
max_close, addmodes, kurt_thresh)

The meaning of these parameters are discussed in previous sections.

Training on Huge data sets

If the number of data samples (N) is very large, the training scripts can
choke like a chihuahua trying to eat a watermellon in one gulp. To handle
this problem, there are scripts that can chop the watermellon into bite-size
chunks and have the same effect (albeit different numerically) as the whole
watermellon. The relevant scripts are gmix_accum.m and gmix norm.m.
The following code demonstrates how to use these two routines in place of
gmix_step.m.

Y= =
% Synopsis: bite-size replacement for

% [gparm,Q] = gmix_step(gparm,xn);

% The following code is equivalent to one call to

% gmix_step. The numerical behavior is different

% since gmix_step uses the newly computed means

% for covariance update, while gmix_accum uses

% the means from the last iteration. This is the

% only way that it can be done since the new means are
% mnot available until gmix_norm is called.

Y = =

)

gparm = init_gmix(.....);
for iteration=1:10,

% initialize accumulators to zero

% at start of each iteration

newmean=[];

newvar=[];

atot=zeros(nmode,1);

for i=1:nmode,
newmean{i}=zeros(dim,1);

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 89

newvar{i}=zeros(dim,dim) ;
end;
qtot=0;

% Loop over 1000 bite-size pieces
for i=1 : 1000,
X = ... % get new data matrix
[newmean,newvar,atot,qtot] = ...
gmix_accum(gparm,x,newmean,newvar,atot,qtot);
end;

% finalize the iteration
gparm = gmix_norm(gparm,newmean,newvar,atot) ;
end;

6.1.5 An Example

Script gmix_example.m is designed as a teaching example for use of the
software. All the basic functions as well as some handy utilities are demon-
strated. Refer to the program listing for the discussion that follows. After
typing >> gmix_example at the MATLAB prompt, you will see the graph
of Figure 13 and the program will pause. This is a two-dimensional “point
scatter” diagram of the data that we will fit a Gaussian Mixture to. Refer
to the program listing to see how this data is created. Pressing any key
initializes the Gaussian Mixture parameters with the following 3 lines:

names={’ENGY’, ’TIME’};

min_std = [.1 .1];

NMODE=1;
gparml=init_gmix(datal,NMODE,names,min_std) ;

The first line assigns names to the two dimensions. We have chosen to call
them "ENGY” and "TIME”. The next line assigns the p, parameters, as
discussed in section 5.3.4. The N training data samples are stored in the
P x N variable datal. The last line creates the parameter structure gparmi.
Since the algorithm starts with just a single mode (NMODE=1), the approxi-
mation is poor (Figure 14). Pressing a key again executes the training with
a 150-iteration limit:

gparml=gmix_trainscript(gparml,datal,150);

90

Feature 2

CHAPTER 6. STATISTICAL MODELS

-2 0 2 4 6 8
Feature 1

Figure 6.6: Samples from a Gaussian mixture.

6.1.

PDF ESTIMATION USING GAUSSIAN MIXTURES

TIME

TIME

-6 -4 -2 0 2 4 6 8
ENGY

Figure 6.7: The initial Gaussian mixture approximation.

91

92 CHAPTER 6. STATISTICAL MODELS

The log likelihood (Q) is printed out at each iteration along with the number
of modes. Log likelihood would monotonically increase, if not for the prun-
ing, splitting, and merging operations. Use of the CONSTRAINT method of
covariance conditioning will also affect the monotonicity. It may be verified,
however, that calls to gmix_step.m with BIAS=1 will result in monotonic
likelihood increase, with the possible exception of numerical errors at the
very end of the convergence process. Whenever mode splitting occurs, the
message “Adding a mode ..” is printed. Whenever mode merging occurs,
the message “Merging ...” is printed. Because in this example, we have
initialized with just one mode, mode splitting is more likely that merging,
although is is possible that after several modes have been split, they can
be re-merged. This causes a “fight” between gmix kurt.m which tries to
split, and gmix merge.m, which tries to merge. In gmix trainscript.m, it
is arranged to allow time between splitting and merging so that the E-M
algorithm can settle out. Otherwise, newly merged modes could be quickly
split, or newly split modes could be quickly merged.

Once gmix_trainscript.m converges, you should should see the graph
on the left of Figure 15. These plots are produced by gmix_view2.m. This
utility is perhaps the most useful visualization tool for high-dimensional
PDF estimation. It allows the data scatter plot to be compared with the
marginalized PDF on any 2-dimensional plane.

Marginalization is a simple matter for Gaussian mixtures. Let z =
[21, 22, 23, 24]. 'To visualize on the (z9,24) plane, for example, we would
need to compute

p(zg,z4):/ / (21, 22, 23, 24)dz1dz3.
z1 Jz3

Instead of integrating out z1, z3, marginalization requires only stripping out
the first and third elements of each mode mean vector, and the first and third
rows and columns of each mode covariance, then computing the resulting
Gaussian mixture! Because we work with the Cholesky decomposition of the
mode covariances, it requires stripping out the necessary columns, then do-
ing a QR decomposition of the result. This stripping operation is performed
by gmix_strip.m. The syntax would be:

gparm_out = gmix_strip(gparm_in, [2 4]);

where the second argument indicates that we want to retain the second and
fourth dimensions. Using this method, the marginal distribution of any 2-
dimensional plane is easily computed. Stripping is handled automatically
by gmix_view2.m.

6.1.

PDF ESTIMATION USING GAUSSIAN MIXTURES

101 N

TIME

TIME

TIME

101

Y

ENGY

Figure 6.8: Gaussian mixture approximation after convergence.

93

94 CHAPTER 6. STATISTICAL MODELS

Press once more and the intensity plot is replaced by a contour plot of
the modes (on the right of Figure 15. The contour plot is obtained by the
fourth argument to gmix_view2.m. The complete syntax of gmix view2.m
is

[p,xp,ypl=gmix_view2(gparml,datal,idxl,idx2, [do_ellip], [M],iplot);

where idx1, idx2 are the indexes of the dimensions requested and do_ellip
is an optional argument that, if equal to 1 (default=0), produces a contour
plot of each mode instead of an image. M is an optional parameter that
defines the number of resolution cells for each dimension of the plot (de-
fault=60). The optional parameter iplot can be set to zero if only the
outputs p,xp,yp are wanted. These outputs provide the output PDF grid
that can be plotted by imagesc(xp,yp,p). In the example, since the data
is 2-dimensional to begin with, there is no dimension reduction performed
by gmix_view2.m. Even though normalized data is input, all plots produced
by gmix viewl.mand gmix _view2.m are produced in the raw un-normalized
data domain so they may be compared with the raw data.

Information about the Gaussian mixture may be printed by calling
gmix_show.m. This information, which includes the mode weights, means,
and determinants, can be directly compared with Figure 15. The true means
are (2,3) and (.5,.5), and the true determinants are 1.44 and 1.0, respectively.
Generally, if the algorithm results in just 2 modes, the parameters agree very
closely. The inclusion of a third or fourth mode makes it difficult to see the
correspondence. But, nevertheless, the PDF approximation is good as evi-
denced by the intensity plot. You can run gmix_example.m again and each
time the result will be a little different. But always, the intensity plot and
the PDF approximation is excellent.

Press the key once more and Figure 16 will be plotted. This figure
shows the 1-dimensional marginals for each dimension displayed along with
the histograms. It is the result of calling gmix_viewl.m. The calling syntax
is

[pdf,xp,h,xh]=gmix_viewl(gparm,data,idx,nbins);

If called without any output arguments, the plot will automatically be gen-
erated. Input “idx” is an array of indexes for the dimensiona desired. For
more than one index, multiple plots are produced. Input “nbins” is the
histogram size.

Press a key once more and Figure 17 is shown. This figure plots the origi-
nal data again in green and some synthetic data created by gmix_makedata.m

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 95

Figure 6.9: One dimensional PDF plots; Marginal PDF’s compared to his-
tograms.

96 CHAPTER 6. STATISTICAL MODELS

Feature 2

-2+

-4 -3 -2 -1 0 1 2 3 4 5
Feature 1

Figure 6.10: Original data (green) and synthetic data (red).

in red. This demonstrates a convenient aspect of GM approximation: gen-
erating synthetic data is simple.

Press a key once more and Figure 18 appears. We now have two data
sets. We will now build a classifier using Gaussian mixtures. The first step
is to train a second parameter set on the second data set. This time, we
will use the top-down approach by initializing with 15 mixture modes. This
time, there will be alot of merging and purging going on, but less splitting!
Press a key again and the training starts. When complete, you should see
Figure 19.

To classify, it is necessary to compute the log-likelihood of test data.
This is done using lgr_evp.m. The name of the subroutine was not
thought up logically, but evolved from (1)og-likelihood (ev)aluation from
the (p)arameters, and the fact that the (QR) decomposition is involved in
the covariance estimates! The calling syntax is

loglik = 1lqr_evp(gparml,datal,0);

6.1. PDF ESTIMATION USING GAUSSIAN MIXTURES 97

8 T T T T T T T
6 i
4+ i
2r i
~
g
3
©
@
i
o i
_2 - -
_4 - -
_6 Il Il Il Il Il Il Il
-8 -6 -4 -2 0 2 4 6 8
Feature 1

Figure 6.11: A second data

class in yellow. The first data

set in magenta.

98 CHAPTER 6. STATISTICAL MODELS

10 B

TIME

TIME

-10 -8 -6 -4 -2 0 2 4 6 8
ENGY

Figure 6.12: Result of top-down approach: Trained GM approximation of
second class.

6.2. APPLICATION OF GAUSSIAN MIXTURES TO PARAMETER ESTIMATION99

ROC curve
1 ©
F05f |
O(} 1 1
0 0.2 0.4 0.6
Pfa

Figure 6.13: ROC curve for two-class problem.

If the third argument was 1, the routine would return a matrix of log-
likelihoods where each column is from one of the mixture modes. The zero
forces the modes to be combined with the apropriate weights into the GM
approximation. In addition, the log-likelihood is compensated for the nor-
malization scaling that was performed on the training data. The ROC curve
is shown in Figure 20. Refer to the listing for details.

6.2 Application of Gaussian Mixtures to Parame-
ter Estimation

6.2.1 Estimation in general

Let the data vector z be composed of two parts x and y:

X
7z =
y

100 CHAPTER 6. STATISTICAL MODELS

We have available training samples of z, however in the future, only y will
be available from which we would like to compute estimates of x. We will
shortly see that the GM density facilitates the computation of the condi-
tional mean or minimum mean square error (MMSE) estimator of x. The
conditional mean estimator is the expected value of x conditioned on y
taking a specific (measured) value, i.e.,

x = E(xly) = [xp(xly) dx

X

The maximum aposteriori (MAP) estimator is given by
X = max p(x|y).

Both the MAP and MMSE estimators are operations performed on p(x|y).
Which estimator is most appropriate depends on the problem. Suffice it to
say that the distribution p(x|y) expresses all the knowledge we have about
x after having measured y.

6.2.2 Estimation using Gaussian Mixtures

The GM representation of the density has the a remarkable property that
p(x]y) can be computed in closed form. This is especially useful in visual-
ization of information. For example, it is useful to show a human operator
the distribution of likely x after y is measured. If desired, the MMSE can be
computed in closed form as well. The MAP estimate can also be computed,
but that requires a search over x.

Let the GM approximation to the distribution be given by

p(xa Y) = Ziaipi(xa y) (63)
By Bayes rule,

p(x,y)
p(y)

1
p(xly) = = mziaim(xa y)
where p(y) is the marginal distribution of y. We now define p;(y) as the
marginal distributions of y given that y is a member of mode ¢. These are,
of course, Gaussian with means and covariances taken from the y-partitions
of the mode ¢ mean and covariance p;, 3;.

| 22 2.78.78 % zzy A
. =) 2 —= ’ ’
H l Py,] ' [By Dyy,

6.2. APPLICATION OF GAUSSIAN MIXTURES TO PARAMETER ESTIMATION101

Then,

plxly) = —Ziaipi(}’)pi(ix’y)

(6.4)
1

_ mziaim (¥)pi(x|y)

where p;(x|y) is the conditional density for x given y assuming that x and
y are from that certain Gaussian sub-class i. Fortunately, there is a closed-
form equation for p;(x|y) [30]. pi(x|y) is Gaussian with mean

Ei(x|y) = pg; + zzy,izgyl,i(y — Py i)- (6.5)

and covariance

cov;(x|y) = Xgpi — Zwy,iﬁgiiﬁyw,i. (6.6)

Note that the conditional distribution is a Gaussian Mixture in its own right,
with mode weights modified by p;(y) which tends to “select” the modes
closest to y. To reduce the number of modes in the conditioning process,
one could easily remove those modes with a low value of p;(y) (suggested
by R. L. Streit).

This conditional distribution can be used for data visualization or, to
easily calculate the conditional mean estimate, which is a by-product of
equations (17),(18),(19):

Bxly) = [plxly)xdx

1
= oy Zenity) [pitxly) x dx (6.7

1
— mziaim(y)Ez’ (x|y)

6.2.3 MATLAB implementation

The subroutine gmix_condx.m is used to generate the conditional distribu-
tion. The syntax is

gparm2 = gmix_condx(gparm,x_idx,y_idx,y)

where gparm is the GM parameter vector for p(z), x_idx are the indexes
indicating which elements of z constitute x (they can be any elements), and
similarly for y_idx.

102 CHAPTER 6. STATISTICAL MODELS

The subroutine gmix_cmean.m uses gmix_condx.m to compute the con-
ditional mean of x. The syntax is

xhat = gmix_cmean(gparm,x_idx,y_idx,y)

where all inputs are identical to gmix_condx.m. The one exception is that
input y can include any number of samples of y. The dimensions of y are
N-by-P where N is the number of samples and P is the dimension of y.

6.2.4 Example of Estimation: Beam Interpolation

Assume that beam intensity values are available from a set of M uniformly
spaced (in direction) sonar or radar beams. A target exists somewhere in
the span of the M beams, yet we do not know its center location, nor
do we know the width of the response to the signal (as in a broadband
system with frequency-dependent beamwidth). We assume for simplicity
that the amplitude is known, yet in principle, amplitude can be another
unknown. Thus, there are two parameters we seek to estimate: direction
d and beamwidth w. This problem normally requires a search in the d,w
plane for best match (as in maximum likelihood). Using GM, we solve the
problem without a search, yet achieve performance comparable to ML!

Let the beam pointing directions be d1,...,dys. Let the beam intensities
b = {b1...ba} be modeled by

b = Aexp {—0.346(d - di)Q%} + n;
where n; is a noise term (we use Gaussian noise in the simulation and CR
bound analysis). This is a Gaussian beampattern with 3 dB width w.

A sample size of 4096 was created using d and w selected from uni-
form distributions in the ranges [-10,10], [15,50], respectively. Parameters
were A = 50, 0?2 = 1, M = 5, {6;} = {-20,-10,0,10,20}. A GM model
p(b,d, w) of 12 modes was trained on the data. To illustrate the ability to
create conditional distributions, p(d, w|b) was computed for a sample of b
computed for d = 2,w = 18 with no additive noise. The result appears in
Figure 21. The visual effect of this figure is to say to the operator that there
are no other values of interest except the peak.

It is also possible to condition on d or w. The conditional distribution
p(b,w|d) was computed for d = 0 and d = —5. these plots are shown
in Figures 22,23. Note that the beam output values have distributions
symmetric about the value of d, as expected. Note also the wider spread of
values on outer beams due to the variations in w.

6.2. APPLICATION OF GAUSSIAN MIXTURES TO PARAMETER ESTIMATION103

Conditional of d,w given data generated with d=2,w=18

WDTH

Figure 6.14: Condition distibution of d (THTA) and w (WDTH) given a
sample of b computed for d = 2, w = 18 with no additive noise.

104 CHAPTER 6. STATISTICAL MODELS

Distr. conditioned on d=0

Figure 6.15: The condition distibution p(b,w|d) marginalized on each di-
mension of b for d = 0.

Distr. conditioned on d= -5

0.2 T T T T T T
—
Foif i
2
O L L L L
-10 0 10 20 30 40 50 60
0.4 : : : : : :
N
Zo2f i
2
o ‘ ‘ ‘ ‘ ‘
-10 0 10 20 30 40 50 60
04 : : : : : :
o™
£ w\ |
o ‘ ‘ ‘ ‘ ‘
-10 0 10 20 30 40 50 60
0.4 : : : : : :
N
T0.2F 4
2 /—.J—J\
o ‘ ‘ ‘ ‘ ‘
-10 0 10 20 30 40 50 60
02 : : : : : :
n
Zolf g
2
o ‘ ‘ ‘ ‘ ‘
-10 0 10 20 30 40 50 60

Figure 6.16: The condition distibution p(b,w|d) marginalized on each di-
mension of b for d = —5.

6.2. APPLICATION OF GAUSSIAN MIXTURES TO PARAMETER ESTIMATION105

Bias of d for fixed w (w=20). 12 modes

bias, degrees

L L L L I I L I I
10 -8 -6 -4 -2 o} 2 4 6 8 10
direction d, degrees

Figure 6.17: Plot of d — d for noise-free data with w = 20.

Estimates of d,w were obtained using formulas (20),(18). To determine
bias, uncorrupted (no noise) values of b were created for a range of d for w
fixed at 20, and for a range of w for d fixed at 2. These two graphs appear
in Figures 24,25. In each case, the bias error is plotted as a function of
the variable parameter. Bias is clearly a function of the operating point. It
is also a function of the number of modes and the convergence point of the
GM approximation algorithm. Random error was determined by choosing
a specific value of d, w and running 300 trials with independent noise added
to b. The result of 300 trials is shown below.

True Value | Mean | Variance | CR Bound
d |2 1.9435 | .0550 .0493
w | 18 18.003 | .09756 .0945

Results of 300 trials, A =50, 6> =1, M =5.

The results were in close agreement with the CR bound. Strictly speaking,
the CR bound does not apply since the conditional mean estimator is biased
for a fixed d,w (it is unbiased for random d, w conditioned on b), however,
the CR bound is useful for comparison purposes.

6.2.5 CR Bound analysis
The log-PDF of the data b is

4 2
1np(b;d,w)——§1n (2mo?) ~3 221 1[Aexp{—0.346(d—di)2ﬁ}] :

106 CHAPTER 6. STATISTICAL MODELS

Bias of w for fixed d (d=2). 12 modes

bias, degrees

; . .
30 35 40 45 50
width w, degrees

L L
“15 20 25

Figure 6.18: Plot of w0 — w for noise-free data with d = 2.

where o2 is the variance of the additive independent Gaussian noise. The
components of the Fisher Information Matrix (FIM) for PDF parameters

¢i, ¢ are given by

o a?lnp(b;qsi,qu))
Foue; = E(09109,

Let the FIM be given by

_ | Faa Faw
F(d’w)_led Fww]'

A standard CR bound analysis [17] produces

A? 8 \2 M
Fua= 25 (03165) S0 (@ i) exp(-w))*

A2 8 \? M 2
Fww = ? (0346$> Zi:l ((d — dz)2 exp(—wi))

A? 8 \2 M 2
Fop = Fypg = — (0.346m) Zz’:l ((d — dz-)2 exp(—wi))

wo?

where w; = 0.346(d — di)2542. The CR bound matrix is given by C(d, w) =
Fl(d,w).

6.3. PDF ESTIMATION USING HMMS 107

6.3 PDF Estimation using HMMs

The hidden Markov model (HMM) is a powerful statistical model that
closely approximates many phenomenon found in nature, such as human
speech. While a very powerful statistical model, HMM’s need to be de-
signed specifically for each signal type. A single HMM cannot easily act as
a classifier between a wide variety of signal classes. At least this was true
until the introduction of the class-specific method. In the following sections,
we introduce HMM’s and show how they naturally fit into the class-specific
scheme. A versatile HMM software toolbox for MATLAB is also described.

6.3.1 Introduction to HMM’s

The fundamental assumption of an HMM is that the process to be modeled
is governed by a finite number of states and that these states change once per
time step in a random but statistically predictable way. To be more precise,
the state at any given time is depends only on the state at the previous time
step. This is known as the Markovian assumption. Figure 26 illustrates
a hidden Markov model (HMM). At each time step (time running to the
right), the Markov model is in one of the five possible states. According
to the Markovian assumption, the probability that the model is in state j
at time ¢ is governed only by the transition probability F;;, where i is the
true state at time ¢ — 1. The Markov model is “hidden” from view by the
observer who can only observe measurements z; whose PDF is governed by
the true state at each time step. The mathematics of the HMM are reviewed
in section 7.2.

How HMM'’s are used.

The Baum-Welch algorithm is an algorithm for estimating the parameters of
the HMM from training data. The HMM is a complete statistical model for
the series of measurements z1,zs, ...,z and therefore defines the probabil-
ity density function p(zi,2s,...,z7). Therefore, once the parameters have
been determined, it is easy to use the HMM as a classifier. Furthermore,
it is also easy to generate ”typical” measurement sequences. This aspect of
the HMM has always fascinated me since in principle, it would be possible
to train an HMM on a specific human speaker, then create totally random
“jibberish” that sounded like the same speaker. I have always thought that
here is potential invention. For further information on HMM’s, the reader
is referred to the tutorial by Rabiner [31].

108 CHAPTER 6. STATISTICAL MODELS

'O py © ® p, © @
T30 @ o o \Ps @
sates © © © @ O °®
ates _ : : : :
Hidden"'é """" ------ é_______é_______é__
pl(z) p4(Z) pZ(Z) pZ(Z) pS(Z)
v v Y v v

z zZ, Zs

1 Z; Z3
Observer: @ @

Figure 6.19: A hidden Markov model (HMM). As the state transitions occur
from sample to sample, the observer, cannot see the states directly. Instead,
the observer makes observations whose PDF depends on the state.

6.3. PDF ESTIMATION USING HMMS 109

The role of HMM’s in class-specific classifiers

In classifying signals, The hidden Markov model (HMM) has a major ad-
vantage but one serious drawback. The advantages is that complex pro-
cesses may be modeled using low-dimensional models, thereby allowing the
HMM to be trained using a realizable amount of data. The low dimen-
sion is achieved by dividing (segmenting) the data into small time steps
from which low-dimensional measurements are made. Although the total
observation space is large (the number of steps times the dimension of the
observations), the dimension of the observations may be kept low.

But the problem with HMM’s is that they need to be carefully tailored
for a specific type of random process. Not only is the segment size chosen
specially, but so is the observation space (the feature set). It is difficult for
an HMM designed for speech recognition to operate well for other types of
processes except speech. If separate HMM’s are used, the likelihood values
cannot be directly compared in a classifier. The class-specific method solves
this problem by allowing two or more HMM’s to be used as detectors for
their respective model class, while solving the problem of comparing the
outputs optimally.

6.3.2 The standard HMM

Following the notation of Rabiner [31], there are T" observation times. At
each time 1 < ¢ < T, there is a discrete state variable ¢; which takes one
of N values ¢; € {S1,S2,---,Sn}. According to the Markovian assumption,
the probability distribution of ¢;+1 depends only on the value of ¢;. This
is described compactly as a state transition probability matrix A whose
elements a;; represent the probability that ¢;11 equals j given that ¢; equals
1. The initial state probabilities are denoted m;, the probability that ¢;
equals S;.

It is a hidden Markov model because the states ¢; are hidden from view;
we cannot observe them. But, we can observe the random data O; which is
generated according to a PDF dependent on the state at time ¢t. We denote
the PDF of O; under state j as b;(Oy).

The complete set of model parameters that define the HMM are

A ={mj, a5, b5}
The Baum-Welch algorithm calculates new estimates A given an observation
sequence O = 0103 --- Or and a previous estimate of A. The algorithm is

composed of two parts: the forward/backward procedure, and the reestima-
tion of parameters.

110 CHAPTER 6. STATISTICAL MODELS

Using Gaussian Mixtures for b;(0).

It will be convenient to model the PDF’s b;(O;) as Gaussian mixtures:

M

m=1

where
- - 1 —
N(07 Fim» U]Tﬂ) = (27!') P/Z‘U]ml 1/2 €Xp {_5(0 - p‘jm)lU]r}L(O - I“"]m)})

and P is the dimension of O. We will refer to these Gaussian mixture
parameters collectively as

bj = {ij7 Him» UJm}

Forward /Backward Procedure

We wish to compute the probability of observation sequence O =
010 -+ Or given the model A = {7}, a;5,b;}. The forward procedure for
p(Ol}) is

1. Initialization:

ai(i) =m bi(01), 1<i<N (6.8)
2. Induction:
a+1(7 [Zat aZ]] i(O441), 1<t<T -1
(6.9)
1<j<N

3. Termination: v
p(O|A) = ZlaT(i) (6.10)

i=

The backward procedure is

1. Initialization:

pr(i) =1 (6.11)
2. Induction:
Za” (O41) Bey1(j), t=T-1,T—-2,---,1

1<i<N

(6.12)

6.3. PDF ESTIMATION USING HMMS 111

Reestimation of HMM Parameters

The reestimation procedure calculates new estimates of A given the obser-
vation sequence O = 0105 - -- Op. We first define

at(z') Qg4 bj(0t+1) ﬁt—kl(j)

&(i,d) = v (6.13)
YD (i) aij 0j(Or41)Besr ()
i=1j=1
and
N
(i) = Y &,). (6.14)
7j=1

The updated state priors are
i = 71(3)- (6.15)

The updated state transition matrix is
T-1
Z&t(zaj)
t=1

T-1)
Z’Yt(i)
t=1

~

a;; =

(6.16)

Reestimation of Observation PDF’s

In order to update the observation PDF’s, it is necessary to maximize

T
Qj = Zwtj log bJ(Ot)

t=1

over the PDF b;, where

(i) full)

N

> (i) Bili)

=1

(6.17)

wt ﬂj =

This is a weighted maximum likelihood (ML) procedure since if w; = ¢,
the results are the strict ML estimates. The weights w;; are interpreted as
the probability that the Markov chain is in state j at time ¢.

112 CHAPTER 6. STATISTICAL MODELS

Reestimation of Gaussian Mixture Parameters

If b;(O) are modeled as Gaussian mixtures (GM), one could simply deter-
mine the weighted ML estimates of the GM parameters. Since only iterative
methods are known, this would require iterating to convergence at each step.
A more global approach is possible if the mixture component assignments
are regarded as “missing data” [32]. The result is that the quantity

T M
Qi =Y. (4, m)logb;(O) (6.18)

t=1m=1

is maximized, where

. Cj N(Ot,IJw ,Uj)
»(,m) = wej |5 e (6.19)

chk N(Ota Mg Ujk)
k=1

The weights 7¢(j,m) are interpreted as the probability that the Markov
chain is in state j and the observation is from mixture component m at time
t. The resulting update equations for c¢jm, W, and Ujm are computed as

follows:
T

Z "t (.73 TI’L)
t=1

Ejm = (6.20)
DN w0
t=11=1
T
> (4, m) Oy
L = = (6.21)

T
Z’Yt (]a m)
t=1

T
Z '-Yt(ja m) (Ot - ”‘jm) (Ot - l“jm)l
U = &2 (6.22)

T
Z’Yt (.71 m)
t=1

Note that the above equations do not treat the problem of constraining the
GM covariances. This needs to be addressed (see section 5).

6.3. PDF ESTIMATION USING HMMS 113

Multiple Records

It is fairly straight-forward to extend the Baum-Welch algorithm to the case
when multiple observation sequences (“records”) are available. Rather than
01,04,...,0r, we have O, 05,...,0, r=1,2,...,R. For each record,

1. Run the forward-backward procedure on 07,03, ...,0F to produce
oy (1), B7(4),

2. Compute & (3,7), t =1,...,T; as in (26).

3. Compute v; (%) as in (27).

Then, we have

Updating the Gaussian mixture parameters requires defining
T\ AT(4
wp; = 21 () B () ’
> ap(i) A (0)
i=1

which leads to v} (j, k) through (32). We then have

R T,

3> (G, m)
N _ r=1t=1
Cm="fr T M

22> 76D

r=1t=1]=1

and
R T,

N _ r=1t=1
Hjm = —g T,

3> viGm),

r=1t=1

. et cetera.

114 CHAPTER 6. STATISTICAL MODELS

6.3.3 MATLAB toolbox for HMM
We will demonstrate the HMM toolbox by example.

An HMM example

We now describe a simple problem that we will analyze using the HMM
tools. Consider the HMM with the following parameters:

81 1 1
A=]1.1 8 1 m= |0
1 .1 .8 0

The output of the HMM is a time series with a 16-sample step size (i.e. the
state is allowed to change every 16 output samples). The output is Gaussian
with mean and variance depending on the state as follows:

State Mean Var

1 0 1
2 0 4
3 2 1

For each 16-sample segment, the sample mean and standard deviation are
computed. This constitutes a 2-dimensional feature vector that is the ob-
servation space of the HMM.

Creating feature data for training.

To test the tools, we need to generate HMM output data from the above-
defined model. Execute the script file hmm example.m. The program calls
the function hmm_maketestdata.m which generates the 2-dimensional feature
data as described above. The call is

[x,istart,nsamp]=hmm_maketestdata(Pi,A,nrecord,nsteps,N,NFEAT);

There are 10 records of length 400 segments, thus x is size 2-by-4000. The
auxiliary outputs istart ,nsamp are vectors containing the starting samples
and lengths of each of the ten records. This makes it possible to locate
individual records within the matrix. The script then plots the data using
the command

plot(x(1,:),x(2,:),’b.%);
xlabel (’MEAN’) ;
ylabel(’STDV’);

and waits for keyboard input. The resulting figure is shown in Figure 27.

6.3. PDF ESTIMATION USING HMMS 115

3.5

STDV

151

05t ool) T 1

Figure 6.20: Scatter plot of the HMM output features. The three states
can be seen individually. Compare the plot with the table of means and
standard deviations.

116 CHAPTER 6. STATISTICAL MODELS

Initializing HMM parameters

Next, initialize a set of HMM parameters using the commands.

names={’MEAN’,’STDV’};

min_std=[.1 .1];

NSTATES=3;

NMODE=10;
parm=init_hmm(x,NSTATES,NMODE,names,min_std) ;

This first two commands define the feature names and the minimum stan-
dard deviations for Gaussian mixture estimation (See Section 5). The initial
HMM parameters are obtained by using init_hmm.m which creates a uniform
state transition matrix A and prior probability 7. The PDF of the feature
vector in each state is approximated by Gaussian mixtures. The starting
point for the Gaussian mixture parameters are obtained by the function
init_gmix.m described in the previous sections.

Training using the Baum-Welch algorithm

To run 10 iterations of the Baum-Welch algorithm, use the commands:

NIT=100;
[g, parm] = hmm2_reest(parm, x, istart, nsamp, NIT);

The algorithm prints the total log likelihood at each iteration. At the end,
it prints the final state transition matrix and initial probabilities. These
should be close to the correct ones.

Viewing the state PDF’s

To view the HMM PDF’s, execute the command
hmm2_view(parm,x,1,2);

This produces the three state PDF plots as shown in Figure 28. The last
two arguments are the indexes of the two dimensions to be viewed. Since
there are only two dimensions, the only choice is 1,2 (See a description of
gmix_view2.m in Section 5). Look at the figure and try to figure out which
PDF corresponds to state 1, 2, and 3. If a bad starting point was used, it
may not have worked.

6.3. PDF ESTIMATION USING HMMS 117

State 1 State 2

State 3
r T T T T T T ™

1
MEAN

Figure 6.21: PDF plots of the three state PDF’s after convergence. Aside
from some minor outlier modes, the PDF estimates correctly approximate
the true PDF’s. It is easy to see which PDF corresponds to which state of
the simulated HMM.

118 CHAPTER 6. STATISTICAL MODELS

Annealing

No matter how many iterations one makes, the bad solution will never con-
verge to the correct. But there is a method that is usually successful in
nudging a solution away from a bad stationary point. This we call anneal-
ing and is done by expanding the covariance matrices of the PDF estimates
and by pushing the state transition matrix and prior state probabilities
closer to “uniform”. The utility ann_hmm does this. Attempt to find a “bad”
stationary point by re-running the above sequence until one is found. Next,
use the commands

parm=ann_hmm(parm,2,1.2);
[log_pdf_val, parm] = hmm2_reest(parm, x, istart, nsamp, NIT);
hmm?2_view(parm,x,1,2);

This should correct the problem. Try it to satisfy yourself that it works.
The second argument is the expansion factor for Cholesky factors of the
covariance matrices and the third is a parameters greater than 1.0 that
determines how much the state transition matrix is annealed.

Creating Synthetic Observations

Creating sequences of observations corresponding to an HMM parameter set
is simple. The command

[x2,states]=hmm2_synth_mex (parm,100);
x2=x27;

creates a record of “nsamp” observations from the HMM defined by pa-
rameter set “parm”. The output vector is of “nsamp” rows and number of
columns corresponding to the feature dimension. It has to be transposed to
agree with the normal convention. The states are passed to the output as
variable “states”.

Estimating the states: the Viterbi algorithm.

The Viterbi algorithm [31] estimates the most likely state sequence. The
command:

states=viterbi(parm,x);

Outputs the most likely state sequence corresponding to data x. As a test,
try the following commands:

6.3. PDF ESTIMATION USING HMMS 119

[x2,states]=hmm2_synth_mex(parm,100) ;
x2=x27;

est_states=viterbi(parm,x2);

Compare the estimated states with the actual.

Classifying using the trained HMM parameters

The log-likelihood output of the train hmm program can be used as a clas-
sifier. If the number of iterations is specified as zero, a shortened version of
the program is run, only running the forward procedure.

[q, parm] = hmm2_reest(parm, x, istart, nsamp, 0);

Since the program finds the total log likelihood for each record passed to it,
the total likelihood will be the sum of the elements of “q”.

6.3.4 Class-Specific HMM

We review the Baum-Welch algorithm for the standard HMM in section
7.2. While the Baum-Welch algorithm itself is well-defined, initialization of
the HMM is more of an art. By studying a random process, it is possible
to discern distinct physical modes. The number of Markov states to use
(N) is at least as large as the number of modes. One could initialize the
state PDF’s b;(O) randomly without any prior assumption about which
state corresponds to which physical mode or phenomenon. In this case,
it is difficult to predict which state will correspond to which mode after
convergence. Or, one could ascribe each Markov state to a particular mode.
Then, the state PDF’s b;(O) may be initialized by training them on labeled
samples for the corresponding mode.

Since it common practice to ascribe certain subsets of training data to
initialize individual Markov states, it is not unreasonable to ascribe a fea-
ture set (sufficient statistic) as well. In the classic HMM, likelihood values
are the basis of comparison within the Baum-Welch algorithm. Now, since
each state uses it’s own feature space with possibly a different dimension,
likelihood ratios are needed as a basis of comparison. We will see that in
the first step, division by a common likelihood function p(O;|Hy) is nothing
more that a special scaling and is equivalent to the classical approach. In
the second step, these likelihood ratios are written in terms of the sufficient
statistics of the given state. As a result, the HMM parameters may be esti-
mated using fewer training samples. Or, given a fixed training sample, the
HMM parameters are more accurately determined.

120 CHAPTER 6. STATISTICAL MODELS

We assume that for each state j, there is a sufficient statistic Z;. Suf-
ficiency is meant in the following sense [20]: Let there be a common state
with known PDF corresponding to 5 = 0 such that

j=1,...,N, (6.23)

where b% (Z;) are the PDF’s of Z; for state j. The superscript “2” is used
to distinguish these PDF’s from b;(0O). In the above expression we are
using the property that the likelihood ratio remains the same if written in
terms of a sufficient statistic. State 0 may be thought of as the noise-only
condition (the absence of signal). Or, in other cases, it may be thought
of as the normal state. It may appear overly restrictive to require that a
common state Hy exists, but this is misleading. All that is required is that
the statistical models for each state include a noise-only condition. This is
achieved by including an amplitude parameter in the model. The hypothesis
that State 0 occurs at all time samples is denoted Hy.

The primary goal of the Baum-Welch for the standard HMM is the cal-
culation of A by maximization of p(O|\). The primary goal of the Baum-
Welch for the class-specific HMM is the calculation of A by maximization
of pIE(O()||};\3)' Clearly this results in the same value of A. The complete set of
model parameters that define the class-specific HMM are

AI = {7!']', Ajj, bj}

Note that knowledge of)\’ is equivalent to knowledge of \ since from (36),

b;j(0) = bo(0)

(6.24)

and by(0), b§(Z;) are presumed to be known PDF’s (either the PDFs are
known exactly, or they may be estimated from an unlimited amount of data).

Substitution of likelihood ratio for b;(O)

We now replace every occurrence of b;j(O) with %f% and prove that the
resulting algorithm arrives at the same estimate of A. First recognize that

if 0105 - - - Oy are independent and identically distributed (7id) under Hy,

p(O|Hy) = TI_1p(O¢|Hy) = II{_1by(Oy).

6.3. PDF ESTIMATION USING HMMS 121

Now we replace b;j(O;) with b;(O;)/by(O¢) in (21) and (22). The resulting
values of ay(7),B:(i) we denote by «f(i), 55 (i) where “c” stands for “class-
specific”. Note that

sy at(i)
af(i) = T _by(On) (6.25)

and _
Bi(i) = % (6.26)

a Hu:t—l—lbo (Ou)

When the forward procedure terminates, we have

of (Z): aT(i) _ aT(i)
T 2 b0(0,) P(O|Ho)

Thus, the modified forward procedure computes p(O|\)/p(O|Hyp).

It may be verified from (38), and (39) that the use of af(i) and Sf(i)
in place of a4(7) and £;(i) has no effect in the Baum-Welch algorithm (i.e.
equations 26, through 30), leaving the estimates 7;, G;; and weights w; ;
unchanged. This is not surprising since division by p(O|Hp) is merely a
special scaling.

Reestimation of PDF’s

Recall from section 7.4 that knowledge of b;(O) is equivalent to knowledge
of b%(Z;). However, if we are to obtain an advantage, we prefer to estimate
b%(Zj). In the standard HMM (refer to section 7.2), we obtain estimates of
b;(O;) by weighted maximum likelihood (ML) by maximizing

T
Qj = Z wtj log bj(Ot). (627)

t=1

over b; where w;; are interpreted as the probability of state j being true at
time ¢. Estimates of b are obtained similarly by maximizing

T
Q5 = Zwtj log b%(Zj1)- (6.28)
t=1

The densities which maximize (41) correspond to the densities which maxi-
mize (40) through equation (37).

122 CHAPTER 6. STATISTICAL MODELS

Gaussian Mixture for b7(Z;).
Let b%(Z;) be approximated by a Gaussian mixture:

M;
Vi(Z5) = Y o N(Zj, 05, Us), 1< <N,

m=1

where
_p — 1 _
N (Zj. s Usn) = @)Ul 2 050 { =3 (2, ~ i) U325 —)}

and P; is the dimension of Z;. We will refer to these Gaussian mixture
parameters collectively as

z A 2 z z
bj = {ij’lJ‘jm’Ujm}

At each step of the Baum-Welch algorithm, the mixture which maximizes
(41) is required. Since only iterative methods are known for this optimiza-
tion problem, this requires iterating to convergence. Instead, by regarding
the mixture component assignments as “missing data” in the E-M frame-
work [32] as is done in section 7.2.5 for the standard HMM, it is possible to
incorporate the Gaussian Mixture updates into the Baum-Welch algorithm.
The Gaussian mixture updates for b7(Z;) are analogous equations (32)
through (35). Updates of Cim» W, and U7, are computed as follows:

T

Z ’Yt(jam)

i = tﬂT (6.29)

T
ZZ’W(]” l)

t=11=1

T
Z’Yt(ja m) Zj,t
N2 t=1

W =L (6.30)

T
> 1elism) (Zjg — im) (Zjg — Bim)'

T
Z’Yt (.77 m)
t=1

6.3. PDF ESTIMATION USING HMMS 123

where

. Cim N(Zjty Wim, Ujm)
Vt(]am) = Wy,j]\;m : A) (632)

j{:cyk (Zjts 55> Ul)

where wy ; is from (30). It may be verified that substituting of (i) and Sf(7)
for ay(i) and B(7) in (30) has no effect.

Summary of Class-Specific Baum-Welch Algorithm

1. The class-specific forward procedure

(a) Initialization:

. b3 (Z;,1) .
oi(i) =m ——%, 1<i<N 6.33
1() 2 bg(Zzyl) = = ()
(b) Induction:
b3 (Z
a1 (J lzat am] J—,,zgzj 213 1<t<T-1
(6.34)
1<j<N
(c) Termination:
PO _ -
————= =) a7t 6.35
2. The class-specific backward procedure:
(a) Initialization:
B5.(i) = 1 (6.36)

(b) Induction:

ZGU bz Jt+1 ,8t+1() t:T_l,T—2,1

j,6+1)

1< <N
(6.37)

124

CHAPTER 6. STATISTICAL MODELS

Reestimation of HMM parameters:

b%(z't-l—l)

c(s J Js c .
o\l) Qi == J
t()) b(z)(Z],t 1) t+].()

Al b3 (Zjt41)
of(d) ai; =0 B8 (5
;]; #l6) o b§(Zj,141) 1)

&(i,7) = : (6.38)

followed by equations (27), through (29).

Update of PDF’s. Maximize equation (41) over b7 where
a;(4) BE ()

~ .

> i (i) A7 (i)

i=1

Wt,j =

. Update of Gaussian mixtures. If the PDF’s in step 4 are modeled as

Gaussian mixtures, use equations (42) through (45).

. Repeat steps 1 through 5 until convergence.

6.4. HIDDEN AR MODEL (HARM) 125

6.4 Hidden AR Model (HARM)

126 CHAPTER 6. STATISTICAL MODELS

Chapter 7

PDF Verification: The Acid
Test

The term “Acid test” is based on the notion that by applying acid to metals,
only precious metals such as gold resist the acid. Thus, an “acid test” is a
test that cannot be fooled. A fool-proof test is also needed to verify the PDF
projection theorem. Otherwise, how will we know whether one branch of
the classifier has an error in which its output is biased high or low producing
many false classifications?

According to the PDF projection theory, and the Chain Rule (3.13),
pz(x|H7) is written as a product of module Q-function times p,(z|H;), which
we write

ﬁw(x|H1) = Qﬁz(z|H1) (7'1)
The primary concern is whether Q) is correct. The Acid test is a way to
verify this. In particular, we design a hypothesis H,.iq for which we
1. know the PDF p(x|Haciq) exactly,

2. can create raw data x synthetically under H,q,

3. and can estimate p(z|Hyciq) accurately

from the simulated data.

A useful reference hypothesis is WGN. However, some models may require a
hypothesis which makes estimation of parameters possible. To execute the
acid test, (7.1) (with Hyq replacing Hi) with the known value of p(x|Hyciq)-
By plotting the two quantities on a graph for a large number of samples,
the dots on the graph should cluster about the x=y line. The Acid Test is

127

128 CHAPTER 7. PDF VERIFICATION: THE ACID TEST

a complete end-to-end test because it verifies the PDF estimation as well as
Q-function calculation. it should be performed for all new models.

Appendix A

PDF Projection Theorem

Theorem 1 Let X be a range of possible realizations of x. Let py(x|Hy) be
a PDF defined on X and Let

pz(x|Hp) >0 forall z € X. (A.1)

Let Z be the image of X under the transformation z = T (x). Let p,(z|Hy) be
the PDF of z when x is drawn from the PDF p;(x|Hy). Thus, p,(z|Hy) > 0
for all z € Z. Let f,(z) be any PDF defined on Z. Then

1. The function defined by

Fy(x) = Pz (x|Ho)

= p.rGolHy) 7T (A.2)

is a PDF defined on X, thus it has unit area.

2. Furthermore, if x is drawn from the distribution Fy(x) as defined in

(A.2),

129

130 APPENDIX A. PDF PROJECTION THEOREM

Proof of assertion 1: By definition,

_ pa(x|Hp)
Fy(x) dx = / o POy (T 00) dx

z T(x
= /XEX 1%()&}0) po(x|Hp) dx

Eq|mo {%}
B o {]%}

B /zez PszzZ(|20) Pa(alHo) dz

= /zez f.(z) dz = 1.

Proof of assertion 2: Let M,(y) be the joint moment generating func-
tion (MGF) of z. By definition,

M@y) = E.{er") =B, {7}

xXEX

— y'T(x M) dx
- /XEXe 1) Bl £.(T(x)) d

'T(x z T(x
B /xeX e 1) I% pz(x|Hp) dx

_ y'T(x fz(T(x))
= B {7 B

ol ity |

_ /z e pzf(”zzig)_o) P, (2| Ho) dz

= / eY's f(z) dz,
z€Z

from which we conclude that the PDF of z is f,(z).

131

The PDF F,(x) may be thought of as a PDF constructed on X in such a
way that z = T'(x) is the sufficient statistic (SS) to distinguish F(x) from
pz(x|Hp). By the invariant property of likelihood ratios for SSs, if z; = T} (x)
is a SS for H; vs. Hy and f,(z) — p,(z|H;), then Fy(x) — p;(x|H;).

132 APPENDIX A. PDF PROJECTION THEOREM

Bibliography

[1]

[10]

[11]

H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
1, Detection, Estimation, and Linear Modulation Theory. Wiley, 1968.

A. D. Whalen, Detection of Signals in Noise. Academic Press, 1971.

C. J. Stone, “Optimal rates of convergence for nonparametric estima-
tors,” Annals of Statistics, vol. 8, no. 6, pp. 1348-1360, 1980.

R. E. Bellman, Adaptive Control Processes. Priceton, New Jersey, USA:
Princeton Univ. Press, 1961.

S. Aeberhard, D. Coomans, and O. de Vel, “Comparative analysis of
statistical pattern recognition methods in high dimensional settings,”
Pattern Recognition, vol. 27, no. 8, pp. 1065-1077, 1994.

D. W. Scott, Multivariate Density Estimation. Wiley, 1992.

S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: Recommendations for practitioners,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252—
264, 1991.

Duda and Hart, Pattern Classification and Scene Analysis. Wiley, 1973.

N. Intrator, Feature Ezxtraction Using an Ezploratory Projection Pursuit
Neural Network. PhD thesis, Brown University, 1991.

P. J. Huber, “Projection pursuit,” Annals of Statistics, vol. 13, no. 2,
pp- 435-475, 1985.

P. M. Baggenstoss, “Structural learning for classification of high di-
mensional data,” in Proceedings of the 1997 International Conference
on Intelligent Systems and Semiotics, pp. 124-129, National Institute
of Standards and Technology, 1997.

133

134

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

A. Finch, “A neural network for dimension reduction and application
to image segmentation,” in Proceedings of the 1994 International Con-
ference on Artificial Neural Networks (ICANN-94), pp. 252-264, 1994.

H. Watanabe, Knowing and Guessing. New York: John Wiley, 1969.

T. Kohonen, G. Németh, K.-J. Bry, M. Jalanko, and H. Riittinen,
“Spectral classification of phonemes by learning subspaces,” in Proc.
ICASSP 79, pp. 97-100, 1979.

E. Oja, Subspace Methods of Pattern Recognition. Research Studies
Press, 1983.

E. H. Lehmann, Theory of Point Estimation. New York: Wiley, 1983.

M. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2.
London: Charles Griffin, 1979.

D. R. Cox and D. V. Hinkley, Theoretical Statistics. London: Chapman
and Hall, 1974.

P. M. Baggenstoss, “Class-specific features in classification.,” IEEFE
Trans Signal Processing, pp. 3428-3432, December 1999.

S. Kay, “Sufficiency, classification, and the class-specific feature theo-
rem,” IEEE Trans. Information Theory, vol. 46, pp. 1654-1658, July
2000.

S. Kay, A. Nuttall, and P. Baggenstoss, “Multidimensional probability
density function approximation for detection, classification and model
order selection,” Accepted to IEEE Trans SP, to be published Oct, 2001.

P. M. Baggenstoss, “A theoretically optimum approach to classification
using class-specific features.,” Proceedings of ICPR, Barcelona, 2000.

P. M. Baggenstoss, “A modified Baum-Welch algorithm for hidden
Markov models with multiple observation spaces.,” IEEE Trans. Speech
and Audio, pp. 411-416, May 2001.

H. Daniels, “The approximate distribution of serial correlation coeffi-
cients,” Biometrika, pp. 169-185, 1956.

G. Watson, “On the joint distribution of the circular serial correlation
coefficients,” Biometrika, vol. 43, pp. 161-168, 1956.

BIBLIOGRAPHY 135

[26] S.Kay, Modern Spectral Estimation: Theory and Applications. Prentice
Hall, 1988.

[27] E. Parzen, “On estimation of a probability density function and mode,”
Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

[28] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Anal-
ysis Of Finite Mizture Distributions. John Wiley & Sons, 1985.

[29] N. Vlassis and A. Likas, “The kurtosis-EM algorithm for Gaussian mix-
ture modelling,” IEEE Trans. SMC (submitted), 1999.

[30] Anderson and Moore, Optimal Filtering. PH, 1979.

[31] L. R. Rabiner, “A tutorial on hidden Markov models and selected ap-
plications in speech recognition,” Proceedings of the IEEE, vol. 77,
pp- 257286, February 1989.

[32] B. H. Juang, “Maximum likelihood estimation for mixture multivariate
stochastic observations of Markov chains,” ATE&T Technical Journal,
vol. 64, no. 6, pp. 12351249, 1985.

