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ABSTRACT

The classical Bayesian approach to classification requires knowl-
edge of the probability density function (PDF) of the data or suffi-
cient statistic under all class hypotheses. Because it is difficult or
impossible to obtain a single low-dimensional sufficient statistic, it
is often necessary to utilize a sub-optimal yet still relatively high-
dimensional feature set. The performance of such an approach
is severely limited by the ability to estimate the PDF on a high-
dimensiopnal space from training data. A new theorem shows that
by introducing a special “poise-only” signal class (HO), it is possi-
ble to re-formulate the classical approach based upon M sufficient
statistics, one corresponding to each signal class. Furthermore,
the optimal classifier requires knowledge of only the PDF’s of the
sufficient statistics under the corresponding signal class and under
noisc-only condition. We present simulation results of a 9-class
synthetic problem showing dramatic improvements over the tradi-
tional high - dimensional approach.
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1. INTRODUCTION

In M-ary classification, one is often given the original data set x,
which is usually reduced to a set of statistics {x1,%2,...,%xam},
which we represent by {x; }f‘il . The optimal Baysian classifier is
given by

arg m;"xp({xi}?il |H;)p(H;) 1)

The problem with this often-used formulation is the follow-
ing. Very often some of the features are chosen to be descriptive
of a particular class. For example, if H; was a narrowband data
model, then it would stand to reason that one of the feature sets,
say x;, ought to be based on a fourier analysis of the data x. The
data under hypothesis H; may be based on a statistical model with
a fairly small number of parameters which are often closely or
loosely associated with a corresponding small set of features. It is
then common practice to snatch defeat from the jaws of victory by
lumping all these features together into a high-dimensional super-
set {x,' }?_{_1 .

The complexity of the high-dimensional space rapidly exceeds
our ability to estimate the distribution. The exponential increase in
complexity of systems has been termed the curse of dimensional-
ity by Richard Beliman [1}. In complex problems, there may be as
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many as a hundred separate measurements involved. This dimen-
sionality is entirely unmanageable. It is recognized by a number
of researchers that attempting to estimate PDF’s nonparametrically
above 5 dimensions is. difficult and above 20 dimensions is futile
21

We are motivated to find a classifier formulation based on us-
ing small sets of features separately, not lumped together. The
following theorems shows one way to arrive there.

2. CLASS-SPECIFIC FORMULATION

The ideas of sufficient statistics [3] are not entirely new in clas-
sification [4],[S],[3]. However, up until now there has not been a
general method for building an optimal classifier based on a non-
homogenious set of features, that is feature sets selected separately
for each data class, aside from the traditional method of treating
the entire set together. This theorem fills this gap: ’

Theorem 1 Let there be M hypotheses H, . .., Hyr. Under each
hypothesis, say Hj, let the data x be completely parameterized by
a parameter set §;. Furthermore, for each class j, let there be a
sufficient statistic for 8;, x; = T;(x). Let the span of §; include
a null case 09 which corresponds 1o signal not present. Because
each hypothesis contains this equivalent case, we have

p({x:}ii|H1,09) = p({x:}}L,|H>,69)
= - @
= p({xi}idi|Ha, 60%)
Then, the optimum Bayes classifier reduces 1o
arg max p(leHf) I)(Hj) (3)

p(x;|H;,0; = 87)
Note that this formulation uses only low-dimensional distributions.
The proof is provided in the appendix.

This result shows that if {x;} are sufficient for the parameter-
izations of corresponding class, then the optimum Bayes classifier
reduces to a classifier based only on the low-dimensional distribu-
tions. This is very important in the context of high-dimensional
problems.

7

Note that class Hp needs to be accessible from all classes through
the parameter set. The only natural class to use would be the noise-
only class. This has a distinct advantage because the likelihood
ratios in (3) can be thresholded in order to reject all the classes
except Hyp, a convenience when classifying weak-signal data.



3. PRACTICAL CONSIDERATIONS

To utilize (3), it is necessary to obtain estimates of p(z;|Hy) for
both k = 0 and k = j. For k = j, it is clear that exemplars
of z; from a training data set may be used to train a density esti-
mate, for example using Gaussian Mixtures via the EM algorithm.
Likewise, for & = 0, a large number of exemplars may be cre-
ated under the noise-only assumption by simulation. However, a
numerical problem arises for feature vectors which differ greatly
from the noise-only hypothesis (i.e. high-SNR). Then, the denom-
inator density p(z;|Ho) will be outside its useful range in which it
can approximate the density. We are left with several choices:

1. Obtain theoretical densities under Hy by deriving them an-
alytically. This is aided by the fact that the number of fea-
tures is (hopefully) small and that Hy is straight-forward
(i-e. iid Gaussian noise).

F\)

Use large sample approximations based on central limit the-
orem, etc.

3. If analytic expressions are not available, it is often the case
that analytic expressions for the characteristic function is
available. then numerical solutions are possible.

4. Asymptotic analysis of the tail bebavior may be possible if
exact expressions are not available for p(z;|Ho).

5. Approximations to p(z;|Ho) are possible by perturbation
analysis of the feature extraction algorithm z; = T3(x).
This will identify the Jacobian of the transformation and
allow numerical evaluation of the density of z;. If T'(x) is
not 1:1, problems arise, but they are not insurmountable.

‘We now present an example in which both choices 1 and 3 are
used.

4. 9-CLASS EXAMPLE

In this example, we consider 9 data classes denoted Hi, ..., Ho.
e Class Hp: Noise only
e Class H;: Long Sinewave
e Class Hy: Medium Sinewave
e Class H3: Short Sinewave
e Class H,: Long Gaussian Signal
e Class Hs: Short Gaussian Signal
o Class Hg: Short Impulse Signal
o Class H7: Long Impulse Signal
e Class Hs: Long Laplacian Distributed Noise
e Class Hy: Short Laplacian Distributed Noise

Examples of these signals are provided in Figure 1. For each case,
the model includes an amplitude parameter, which is unknown,

and possibly additional unknown nuisance parameters such as phase.

For each model, we derive:

1. An exact or approximate sufficient statistic or maximal in-
variant for the binary hypothesis testing probiem involving
Hj vs. Hy, denoted z; (x).

2. The distribution of z;(x) under Hy. This is used to imple-
ment the denominator of (3),
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Figure 1: Examples of the nine signal types. Signal-to-Noise
(SNR) has been increased for clarity. Actual SNR varies.

For brevity, these derivations could not be included. The statistics
and their associated distributions under Hy are tabulated below in
Tables 1,2. Note that for signals Hg and Hy, the given statistics are
not sufficient and the distributions under Hj are approximations
based on the central limit theorem.

In many situations, the sufficient statistics for a model are still
of relatively high dimension. In such cases it is convenient to ap-
ply the principle of invariance. A rich theory exists on the subject
{6].[7]. The basic idea is that a natural symmetry exists in many
problems that can be represented by a set of transformations. We
want our statistic to have the desired symmetry (invariance to the
transformations) while at the same time exhibiting the maximum
information. The maximal invariant statistic, which is derived
from the sufficient statistic and is of lower dimension, extracts all
the information in the data that is invariant to the transformations.
In most cases, the maximal invariant is intnitive and/or is related to
the likelibood function maximized over the unknown parameters.

Example: the signal is an unknown constant level C in addi-
tive Gaussian noise of unknown variance 2.

d 2
p(x'c) - H(27r0_2)—-1/2e—-2~;3-(1i—0)

i=1

We would like to detect the presence of a non-zero constant. Since
we have no prior knowledge about either C or %, we expect (and
demand!) that our statistical test be invariant to data scaling which
preserves SNR. It certainly would not be a good algorithm if it
was not invariant to scaling. The sufficient statistics are the sam-
ple mean and variance. The maximal invariant in this case is the



square of the sample mean divided by the sample variance, i.e. an
SNR estimate.

‘Whenever the natural symmetry is associated with a nuisance
parameter, the generalized likelihood ratio test (GLRT) is closely
tied to the maximal invariant. In fact, in the example above, the
GLRT will depend on the data only through the maximal invari-
ant. In what follows, we will use maximal invariants in place of
sufficient statistics when necessary.

[T, s sin(ws)] 2}

2 2
= log {[ ﬁ_f x; cos(wi)] + [ f_r_:lz T; sin(wi)} }

= log { [Zf’:l T cos(wz')]2 +

12 77N L
z3 = log Zl_l zycos(wi)| + |D_.0 wisin(wi)
24 = Zf;l o

z5 = Z:V___/f z?
z6(x) = log(z})

z7(x) = Iog(:r] +:cz)

PORINEN
= N 2
L Zi=] T
[ S fail
= Nf2 2
L Z's—l Z;

Table 1: Class-Specific Statistics

5. SIMULATION RESULTS

The following experiment was performed. A total of 8192 samples
from each of classes Hy through Hg were created. Each sample
consisted of a statistically independent realization of a N = 256
time series generated under the corresponding hypothesis. For
each hypothesis, the values of pert.nept model parameters were
selected at random using the a-priori distributions which are pro-
vided in the appendix. For each time series produced, the the
statistics (features) z1, . . ., zg Were computed.

As a check on the determination of theoretical PDF under Ho,
data was also generated for pure Gaussian noise. Histograms of the
Hjy distributions overlaid on the theoretical curves we provided in
Figure 2. Notice that zg and zg are two-dimensional and a planar
plot is needed.

The feature data was used in holdout trials to determine prob-
ability of correct classification (F.) as a function of the number
of training samples (NTRAIN). For each value of NTRAIN, four
independent holdout trials were performed, using all the data not
used in training for determining P... The results of the experiment
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ploslHo) = ()
plaalHo) = (23) exp {~
Jexp {473}

exp {~

p(zalHo) = (§7

2

plaalHo) = X0 (5) ¥ ¥ exp {31}

wof

%

p(eslFiy) = 71 (%) 2 (2 F 1 exp {5 )

p(zelHo) = (27"0’2)—]/2 exp {_%:_%} 636/2
p(zr|Ho) = (47("0‘2)~1/2exp{_i£;_}e=7/2

p(zg|Ho) Gaussian for N — oo:

E (Zs[HQ) =N [ " ‘l
1

cov (ZB'HQ) =N

p(z9|Ho) Gaussian for N = oo

NG
E (zo|Ho) = —- .

cov (zo|Ho) = & I- s \/—%_
LvE 2

Table 2: Distributions of Class-Specific Statistics

are provided in Figure 3 for three classifiers:
1. K-nearest neighbor classifier with K = 3.
2. Full-dimensional (FD) classifier implementing equation (1).
3. Class-specific (CS) classifier inplementing equation (3).

Both the full-dimensional and class-specific classifier are imple-
mented using heteroscedastic Gaussian Mixture approximations to
the various PDF’s [8],[9].

Two claims of this paper are supported by the graph. First
that the lower dimensional formulation performs betier with fewer
training samples. Second, that both formulations are equivalent
(given sufficient data). The latter claim is supported by the asymp-
lotic convergence (o similar performance levels. Of course, the
approximations used for classes Hg, Hy could account for some
sub-optimal behavior of the class-specific formulation. Due to
practical limitations, the FD performance could not be evaluated
at higher that 8192 training samples. Further evidence is obtained
from the confusion matrices of the FD and CS classifiers for 8192
and 128 training samples. There was insufficient space to include
these tables, however they were nearly identical.
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Figure 2: Histograms of statistics under Hy with theoretical distri-
butions.
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Figure 3: Percent correct vs. number of training samples for three
classifiers. Each data point is the average of 4 independent trials.

6. CONCLUSIONS

The benefit of the class-specific formulation of the optimum Bayesian
classifier is clearly demonstrated in a synthetic 9-class problem.
More that 2 orders of magnitude more traimng data is required
by the traditional approach. We have also seen that vast improve-
ments are possible even if approximate sufficiency and approxi-
mate noise-only distributions are used.
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8. APPENDIX
Proof of (3):
We may write
PO = [ o}l 0,)0(0;14,)d0;

i

[ttt iusbes i, 0)
p(x;|H;,0;) p(0;|H;) db;

which, because of sufﬁcienc}_f:

PUxiHL 5, Hj, 05) | p(x;1H;, 05)
p(0;|H;)do,;

Py 1%, Hj, 8;) p(x;| H;)

where p({xi}ﬁl.#j[xj, H;,8;) is independent of 8;, however
we retain @; in the arguments for reasons that will become clear.
Now, p({x,v};"ily,-#ﬂxj, Hj,0;) may be expanded:

p{xi}iLi|H;,6;)
p(x;|H;,6;)

We note that since the quotient is independent of 8;, we might as
well use 6?. Thus, dropping the dependence on 6;,

p({xi s |H;, 69)
p(x;|Hj, 69)
Now, p({x; }}£,|H;, 0?) is independent of j as a result of (2), and

we write it p({x; } 12 | Ho), even though Hy is not actually another
class. Thus,

PU{xi Ly ipi|xj, Hj, 05) =

p({xi}?il,i#jlxijj) =

(x| Hy) = a’%p({xi}ﬁlnﬂw

Now, plugging into (1), and dividing out p({x;}}%,|Ho), which
does not depend on j, we get

|H;)p(H;)

s | Hs ®
= arg max; —LEE o p ()

p(x;1Hj, j:-gj)

arg max; p({x;};
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