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place within the duration of any pulsed signals. When this process
is applied to the above example, the best-fit power ratio is found to
be 6.1 dB.

IV. SUMMARY

The CWT (using the Morlet wavelet) can be used to extract the
relative amplitudes of two or more transient sinusoidal signals. Only
the ratio of the CWT amplitudes at a single time-slice is required.
However, this ratio must be multiplied by the square root of the
inverse ratio of the scale factors (the reciprocal of the frequency) of
the signals (2) in order to calculate the correct relative amplitudes.
Two limitations on the direct application of the correction technique
were presented. First, the effect of finite pulse width on the calculation
of the amplitude ratio was presented. If the chosen time-slice location
is inside the pulse and at least three scale factors from the closest pulse
edge, (2) can still be used. Second, the error introduced by nearby
(in frequency) signals in the ratio calculation was presented. Error-
multiplier contours were calculated for different amplitude and scale
ratios. Example calculations were presented in order to demonstrate
the general technique and to obtain the correct amplitude ratio even
if the worst-case errors are too large.
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Class-Specific Feature Sets in Classification
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Abstract—In this correspondence, we present a new approach to the
design of probabilistic classifiers that circumvents the dimensionality
problem. Rather than working with a common high-dimensional feature
set, the classifier is written in terms of likelihood ratios with respect to a
common class using sufficient statistics chosen specifically for each class.
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I. INTRODUCTION

Consider the problem of classifying a data sampleX into one of
M classes. This is done optimally by the classifier known as the
maximuma posteriori (MAP) or Bayesian classifier

arg
M
max
j=1

p(Hj jX) = arg
M
max
j=1

p(XjHj) p(Hj): (1)

However, if the likelihood functionsp(XjHj) are not known, it
is necessary to estimate them fromtraining data. Dimensionality
dictates that this is impractical or impossible unlessX is reduced
to a smaller set of statistics orfeaturesZ = T (X): One possible
strategy for choosing features is to identify a set of statisticszj

corresponding to each classHj that is sufficient or approximately
sufficient to estimate the unknown state of the class .1 For example,
if Hj was a sinewave in white noise,zj would be based on a Fourier
analysis, but ifHj was a white noise signal,zj would be based on
power estimates. Because some classes may be similar to each other,
it is possible that the feature sets are not distinct. Let

Z =

M

i=1

zi

where set union notation is used to indicate that there are no redundant
features inZ: However, removing redundant features is not restrictive
enough. A more restrictive but necessary requirement is thatp(ZjHj)
exists for allj.2 The classifier based onZ becomes

arg
M
max
j=1

p(ZjHj) p(Hj): (2)

The object of the feature selection process is to insure that (2) is
equivalent to (1). Thus, the features aresufficient for the problem
at hand. We will see in the theorem that follows that there is
a connection between the sufficiency of the feature set for the
classification problem and the classic (Neyman–Fisher) sufficiency. In
spite of the fact that the feature setszj are chosen in aclass-specific
manner and are possibly each of low dimension, implementation of
(2) requires that the features be grouped together into a super-set
Z: However, dimensionality issues dictate thatZ must be of low
dimension (less than about 5 or 6) so that a good estimate ofp(ZjHj)
may be obtained with a reasonable amount of training data. It is
recognized by a number of researchers that attempting to estimate
PDF’s nonparametrically above five dimensions is difficult and above
20 dimensions is futile [1]. It is common for high-dimensional PDF
estimators to perform very well as classifiers in many applications.
However, this is due to the inherent separability of the classes in
the high-dimensional space where any PDF estimator may perform
as well as another. Further performance improvements are difficult
without addressing the dimensionality problem.

Dimensionality reduction is the subject of much research currently
and over the past decades (some good overviews are available
[1]–[3]). Various approaches include feature selection [2]–[4], pro-
jection pursuit [5], [6], independence grouping[7], and subspace
methods[8]–[12]. All these methods involve various approximations.
In feature selection, the approximation is that most of the information
concerning all data classes is contained in a few of the features.
In projection-based methods, the assumption is that information is
confined to linear subspaces.

1Sufficiency in this context will be defined more precisely in the theorem
that follows.

2Thanks to S. Kay for suggesting this requirement.
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We now describe a procedure for choosing class-specific feature
setszj ; j = 1; 2; . . .M such that

a) a classifier can be constructed using only the joint PDF’s of
these class-specific feature sets taken separately;

b) this classifier is equivalent to the classifier constructed from
the union of the features;

c) both classifiers are equivalent to the MAP classifier (1).

Thus, the features are sufficient for the classification problem as a
whole. The following theorem proves the first two points.

II. M AIN THEOREM

What we now show is that it is possible to reduce the maximum
PDF dimension while at the same time retaining theoretical equiv-
alence to the classifier constructed from the full feature set (2) and
to the optimum MAP classifier (1). In the class-specific method of
feature selection introduced above, the fact thatzj corresponds to
Hj is information that is discarded whenZ is created and is not
utilized in (2).

Theorem 1: Let there beM distinct PDF familiesp(XjHj); j =
1; 2; � � � ;M , whereHj are the class hypotheses. For each classj, let
p(XjHj) be parameterized by a random parameter set���j ; thus

p(XjHj) =
���

p(Xj���j ; Hj)p(���j) d���j

for all j: For each classj, let there be a sufficient statistic for���j ;
zj = Tj(X): Let the PDF of the combined feature setp(ZjHj),
whereZ = M

i=1
zi exist for allj. Let the span of���j include a point

���0j that results in an equivalent distribution forX regardless ofj

p(XjHj ; ���
0

j ) = p(XjH0); j = 1; � � � ;M: (3)

Then, the classifier based on the combined feature set (2) reduces to

arg max
j

p(zj jHj)

p(zj jH0)
p(Hj): (4)

Proof: Note that from (3), we have

p(ZjHj ; ���
0

j ) = p(ZjH0); j = 1; 2; � � � ;M: (5)

We may write

p(ZjHj) = p(ZjHj ; ���j)p(���j jHj) d���j

= p(Zj jzj ; Hj ; ���j) p(zj jHj ; ���j) p(���j jHj) d���j

whereZj is the result of removingzj from Z defined by

Z
j

zj = ;

Z
j

zj =Z:

We now make use of the fact thatp(Zj jzj ; Hj ; ���j) is independent
of ���j due to sufficiency, and we may evaluate it at any value of���j ;
we choose���0j :

p(ZjHj) = p(Zj jzj ; Hj ; ���
0

j )

� p(zj jHj ; ���j) p(���j jHj) d���j

= p(Zj jzj ; Hj ; ���
0

j ) p(zj jHj)

Now, p(Zj jzj ; Hj ; ���
0

j ) may be expanded to

p(Zj jzj ; Hj ; ���
0

j ) =
p(ZjHj ; ���

0

j )

p(zj jHj ; ���
0

j )
:

Fig. 1. Detector/classifier architecture.

Now, p(ZjHj ; ���
0

j ) is independent ofj as a result of (3), and thus

p(ZjHj) =
p(zj jHj)

p(zj jH0)
p(ZjH0)

where we write the conditioningfHj ; ���
0

jg asH0: Now, plugging into
(2) and dividing outp(ZjH0), which does not depend onj, we get

arg
M

max
j=1

p(ZjHj) p(Hj)

= arg
M

max
j=1

p(zj jHj)

p(zj jH0)
p(Hj) (6)

which is the same as (4).
Relationship to MAP Classifier:The equivalence of the full-

dimensional feature-based classifier (2) and the class-specific
formulation (4) leads us to ask whether the two classifiers are
equivalent to the MAP classifier itself (1). The answer is yes. To see
this, we begin by dividing the MAP classifier by the density ofX
under the common classH0: We have

arg max
j

p(XjHj)

p(XjH0)
p(Hj): (7)

This leads to theM -ary classifier for uniform Bayesian cost function
[15]. The M -ary classifier is implemented in practice by choosing
H0 so that it is possible to analytically simplify the likelihood ratios
for eachj to processors such as matched filters, etc. Since this is
possible only in some simple cases, it has not found much use in
general classification problems.

In order to arrive at (4), we use the property of likelihood ratios
that they are invariant when written in terms of a sufficient statistic
[16]. We note that the sufficiency ofzj for the underlying parameters
set���j means thatzj is sufficient for the binary testHj versusH0:

In this way, we arrive at (4) immediately.3

A. Discussion

1) Classifier Architecture:The formulation (4) suggests a detec-
tor/classifier architecture as shown in Fig. 1. Each data class cor-
responds to a distinct and independent branch in the diagram. The
output of each branch is a detection statistic for distinguishing the
corresponding signal class fromH0: The modularity of the processor
is has obvious advantages. As long as the sameH0 is used, each
branch can be independently designed, trained, and implemented by
separate computational hardware. As new signal classes are added to
the classifier, it only means adding new branches to the structure—
existing branches remain unchanged.

2) Previous Work: The likelihood ratios are known to be suffi-
cient for optimal classification (see, for example, Lehmann [13]).
Furthermore, the use of likelihood ratios referenced to a “dummy”
hypothesis(H0) has been used in classification (see Van Trees [15]).

3Thanks to S. Kay for this argument and other useful comments.
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Yet, the replacement ofX by sufficient statistics individually chosen
for each hypothesis, and of various dimension, appears to be new.
Architectures have previously been proposed with a class-specific
structure, as in Fig. 1 [14] but is the first time it has been placed on
any theoretical relationship to the MAP classifier.

3) The Common Class,H0: The common classH0 does not need
to be a realistic class. Technically, the only requirement is that the
parameter sets of each class must includeH0 as a special case;
thus, we have the natural role of the noise-only hypothesis. For
reasons explained in the next section, we have found it useful that
H0 represents the condition thatX be samples ofiid Gaussian noise.

4) Establishing Sufficiency:In many real-world problems, the
PDF of X is never known. Thus, the sufficiency of features can
never be established theoretically. Therefore, how can the technique
be used? The simple answer is that sufficiency does not need to
hold exactly in practice. If sufficiency is approximated, so is the
relationship of the resulting classifier to the optimal MAP classifier.
The sufficiency question is a separate problem that we do not address.
However, we have found it useful to require that the features provide
enough information so that the original data can be “recreated to
acceptable fidelity.” The meaning of this depends on the application.
For speech recognition, this would mean that the spoken word is still
intelligible. In a lie detector, however, it would be a more stringent
requirement because the emotional state of the speaker would need
to be preserved.

5) Numerical Issues in Estimating the Densities:To utilize (4), it
is necessary to obtain estimates ofp(zj jHk) for both k = 0 and
k = j: For k = j, it is clear that exemplars ofzj from a training
data set may be used to train a density estimate, for example, using
Gaussian mixtures via the EM algorithm. Likewise, fork = 0, a large
number of exemplars may be created under the noise-only assumption
by simulation. However, in applications where the input data differs
greatly fromH0 (i.e. high-SNR), the denominator densitiesp(zj jH0)
must be evaluated in the tail areas where the approximation is poor.
We observe all the denominators in (4) going to zero simultaneously.
Thus, it is necessary in many cases to use exact analytic expressions
for log p(zj jH0): It is surprising and counterintuitive that meaningful
results can be obtained in the far-tail regions. However, the densities
in the tails contain all the required normalization factors, and as long
as the expressions forlog p(zj jH0) are accurate, there are no errors
introduced. It also seems to be an overly restrictive requirement that
analytic expressions need to be obtained under theH0 assumption.
However, if H0 is defined asiid Gaussian noise, the problem is
greatly simplified. This problem of tail approximation breathes new
life into an old statistical problem. We have already obtained and
tabulated exact results for a large variety of features including order
statistics and autocorrelation estimates.

III. EXAMPLE PROBLEM

The purpose of the example is to illustrate the application of
the class-specific method in a controlled experiment using synthetic
signals. A given set of features will be used in both a conventional
and a class-specific arrangement. The signals were not chosen to
represent any real-world problem in particular. They were chosen 1)
to provide clear sufficient statistics with known distributions under
H0 and 2) to provide a difficult classification environment with some
similar signal types at a wide range of signal strengths. Sufficient
information is provided so that the experiment may be reproduced and
we may compare the results with other methods. Because the signals
are synthetic, an unlimited number of samples may be produced. This
allows the asymptotic (large sample) classification performance to be
approximated in the limit.

A. Signal Models

Let the input data to the classifier be a sample of a time-series of
N samples denotedX = fx1; x2; � � � ; xNg: Consider the following
three signal classes as possible statistical models forX:

1) H1:

xt � N (�; 1); � 6= 0

2) H2:

xt � N (0; 1 + �2); �2 > 0

3) H3:

xt �
N (0; 1 + �2); �2 > 0; t = 1
N (0; 1); t > 1

where we use the shorthand notationN (�; �2) to representiid
Gaussian noise of mean� and variance�2: Let the parameters�; �2;
and�2 be random variables that are fixed for the duration ofX and
whose probability distributions are not known.

Consider the following CS features:

z1 =
t

xt

z2 =
t

x2t

z3 = log(x21): (8)

It should be obvious that we have set up this problem so that the
“common class”H0 is given byxt � N (0; 1); all t: In the next
section, we see that these features are indeed sufficient statistics for
the corresponding classes.

B. Sufficient Statistics and Their Densities UnderH0

In this section, we derive the sufficient statistics for hypothesesH1

throughH3 in the example. ForH1, we write the likelihood ratio as
a function of the unknown parameter�:

p(XjH1)

p(XjH0)
=

N

t=1

(2�)�1=2 expf�(xt � �)2=2g

N

t=1

(2�)�1=2 expf�x2t=2g

= exp �
t

xt �N�2=2 :

It is clear that the likelihood ratio is a function ofz1 = �t xt: Thus,
no matter what the distribution of�, the likelihood ratio test will
depend on the data only throughz1: Therefore,z1 is an SS for the
problem of testingH1 againstH0: The distribution ofz1 underH0

is N (0;N):

log p(z1jH0) = �0:5 log(2�N)�
z21
2N

:
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TABLE I
TABLE OF FEATURES AND PDF’s UNDER H0 FOR THE EXAMPLE

Fig. 2. Log-histograms of featuresz1; z2; andz3 for Gaussian input data plotted on the theoretical curves of log-PDF.

For H2, we write the likelihood ratio as a function of the unknown
parameter�2:

p(XjH2)

p(XjH0)
=

N

t=1

(2�[1 + �2])�1=2 exp �
x2t

2(1 + �2)

N

t=1

(2�)�1=2 expf�x2t=2g

=

N

t=1

(1 + �2)�1=2 exp �
x2t

2(1 + �2)
+ x2t=2

= (1 + �2)�N=2 exp
t

x2t

2

�2

1 + �2
:

It is clear that the likelihood ratio is a function ofz2 = �t x
2

t : Thus,
no matter what the distribution of�2, the likelihood ratio test will
depend on the data only throughz2: Therefore,z2 is an SS for the
problem of testingH2 againstH0: The distribution ofz2 underH0

is Chi-squared withN degrees of freedom

log p(z2jH0) = � log �(N=2) �N=2 log 2

+ (N=2� 1) log z2 � z2=2:

For H3, we write the likelihood ratio as a function of the unknown
parameter�:

p(XjH3)

p(XjH0)
=

(2��2)�1=2 expf�x21=(2�
2)g

(2�)�1=2 expf�x2
1
=2g

�

N

t=2

(2�)�1=2 expf�x2t=2g

N

t=2

(2�)�1=2 expf�x2t=2g

=
(2��2)�1=2 expf�x21=(2�

2)g

(2�)�1=2 expf�x2
1
=2g

=(�2)�1=2 expf�x21=(2�
2) + x21=2g:

It is clear that the likelihood ratio is a function ofz3 = log(x21)
(taking the log is unnecessary but results in a better-behaved distri-
bution). Thus, no matter what the distribution of�2, the likelihood
ratio test will depend on the data only throughz3: Therefore,z3 is
an SS for the problem of testingH3 againstH0: The distribution of
z3 underH0 is log of Chi-squared with one degree of freedom:

log p(z3jH0) = �1=2 log 2� + z3=2� exp(z3)=2:

We have shown in this section thatz1 throughz3 are indeed SS
for the corresponding unknown parameters (and for the hyothesis
testsHj versusH0). The features and their PDF’s under theH0

hypothesis are summarized in Table I.

C. Testing the Models underH0

A crucial step that must be taken prior to proceeding with any
CS development is the validation of theH0 PDF’s. Fig. 2 shows the
result of comparing histograms ofz1; z2; andz3 with theoretical PDF
curves. There is an excellent match with the formulas in Table I. It
is practically impossible to test the tail probabilities, but validation
near the PDF maximum is necessary.

D. Data Generation

Data was generated withN = 64 under each class hypothesis
using random parameter values.

1) ForH1, � was distributed uniformly in decibels in the interval
[�30, �10]. The conversion from decibels is� = 10dB=20:

2) ForH2, �2 was distributed uniformly in decibels in the interval
[�20, 0]. The conversion from decibels is�2 = 10dB=10:

3) ForH3, �2 was distributed uniformly in decibels in the interval
[10, 30]. The conversion from decibels is�2 = 10dB=10:

Due to space limitations, we have not provided histograms of the
distributions of the features. However, the distributions of the param-
eters�; �2; and �2 are chosen specifically to provide a significant
overlap between the feature densities underHj andH0 and to make
the classification problem a difficult one.
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Fig. 3. Probability of correct classification(Pcc) as a function of the number
of training samples from each class. The upper trace is for the class-specific
method. The lower trace is for the traditional method (3-D PDF). Each estimate
of Pcc is an average of ten independent trials using 500 testing samples from
each class in each trial.

E. PDF Estimation

The distributionsp(zj jHj) for j = 1, 2, and 3 were estimated
from simulated data using Gaussian mixture approximation [17].
Similarly, for the traditional method, the features were combined
into a single feature set setz = fz1; z2; z3g, whose PDF was
estimated using Gaussian mixtures under each hypothesis. While a
3-D PDF estimation will hardly pose a problem in most situations,
feature dimensions up to 50 or 100 are often called for in complex
problems. Still, a 3-D PDF requires a healthy amount of training data
to accurately characterize. We will see that it needs much more data
than the 1-D PDF’s of the CS method.

F. Classification Performance

To compare the class-specific method with the traditional method,
the following experiment was carried out. A fixed amount of training
data, say,Ntrain samples, from each class hypothesis was created.
From this data, featuresz1 throughz3 were computed. Gaussian mix-
ture approximations of the the PDF’sp(z1jH1); p(z2jH2); p(z3jH3)
were computed using this data. These PDF’s were used in a class-
specific classifier using the theoretical denominator PDF’s. In addi-
tion, the conventional joint PDF’sp(zjH1); p(zjH2); and p(zjH3)
were estimated and used in a traditional classifier arrangement. A
fixed amount of new data, say,Ntest, for each class was then
created for the purpose of measuring the total probability of correct
classification(Pcc): As Ntrain was varied from as low as 2 samples
to as high as 10 000 samples in approximate powers of 2,Pcc

was determined always usingNtest = 500. To calculatePcc, the
total number of correct decisions in each trial was divided by
3Ntest: The result is plotted in Fig. 3. The figure clearly shows
that at least a factor of 10 more data is required by the traditional
method for the same level of performance. Even for three fairly
well-behaved features, several thousand training samples are needed
for optimum performance. About 100 samples are required for
minimal performance. This clearly shows the effect of dimensionality
on classification performance. For the class-specific method, five
samples are needed for minimal performance and 100 for optimum
performance. Two claims of this correspondence are supported by
the graph: first, that the lower dimensional formulation achieves

maximum performance with fewer training samples and second,
that both formulations are equivalent (given sufficient data). The
latter claim is supported by the asymptotic convergence to similar
performance levels.

IV. CONCLUSIONS

An exact expression has been derived that provides a way of break-
ing down the traditional Bayesian minimum errorM -ary classifier
into low-dimensional distributions. It requires 1) a (small) set of
sufficient statistics for each signal class and 2) a common (noise-
only) class. The benefit of the class-specific formulation over the
optimum Bayesian classifier is clearly demonstrated in a synthetic
three-class problem. More that an order of magnitude more training
data is required by the traditional approach.
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