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Abstract

In this paper we presenta newv approachto the design
of probabilistic classifiers. Ratherthan working with a
commonhigh-dimensionafeaturevector, the classifieris
written in termsof separatéeaturevectorschoserspecif-
ically for eachclassand their low-dimensionalPDFs.
While sufficiengy is notarequirementif the featurevec-
tors are sufficient to distinguishthe correspondinglass
from a common(null) hypothesisthe methodis equiva-
lentto themaximuma posterioriprobability (MAP) clas-
sifier. The methodhasapplicationgo speechimage,and
generapatternrecognitionproblems.

1 Problem Statement

Considerthe problemof classifyinga datasamplex into
one of M classes. The optimal maximum a posteriori
(MAP) or Bayesiarclassifieris
M M
arg max p(H;|x) = arg max p(x|H;) p(H;). (1)

If theLFs, p(x|H;), arenotknown, it is necessaryo es-
timatethemfrom training data To avoid dimensionality
issuesjt is often necessaryo reducex to a smallervec-

tor of statisticsor featues z = T'(x). The traditional
feature-basedlassifieris basedon the PDF estimatesf

z undereachhypothesis:

arg rgliéfc p(z|H;) p(Hj)- )

Becauser needgo be sufiicientfor the entireproblem,it

often mustcontaina large numberof features. The two

fundamentaproblemsin designingsucha classifierare
(1) to obtaina low-dimensionalfeaturevectorwith suf-

ficient information and (2) to obtainits joint PDF esti-

mateundereachclasshypothesis PDF estimationabove

a dimensionof about5 is problematic[?]. As a result,
featurereductionis often needed?]. High-dimensional
PDF estimatorscan perform well as classifiersif there
exists good separabilityamongthe classesn the high-

dimensionalspace. Further performancemprovements
aredifficult without addressinghe dimensionalityprob-

lemin amoredirectmanner

Considera setof class-specifiéeaturevectors(FV):

z; = Tj(x), 1<j<M,

which do not needto be unique (we could have T; =
T}, for somek # j). Criterion for selectingfeaturesis
discussedbelon. Thedimensionof theclass-specifi€Vs
will be equalto or lower thanthat of thecommonFV z.
Assumethat we have available estimatesf the PDFsof
eachFV underthe correspondindyypothesis:

p(zi|H;) 1<j<M. @)



We seeka way to re-write the classifier(1) in termsof
the PDFsof the class-specifideatures(3). To make fair
likelihood function (LF) comparisonsit is necessaryo
“project” thesePDFsbackto the original dataspace.

2 Theoretical Results
We definethe“projected”PDF as

p(x|Ho,j)

i) 2 | HEER | o), @)

where Hy ; is class-dependentull hypothesisthat can
be a simplified casesuchasindependenGaussiaror ex-
ponentiallydistributed noise. We will prove shortly that
thefunctions{p(x|H;)} givenin equation(4) areindeed
PDFsandfurthermorehey inducethecorresponding’DF
p(z;|H;) onz;. We assumehat for eachyj, the PDFs
p(x|Ho ;) andp(T;(x)|Ho, ;) areknown exactly and for
all realizationsof x we have p(T;(x)|Ho ;) > 0.

Theorem 1 Let X be a range of possiblerealizations
of x. Let p,(x|H,) be a PDF definedon X and Let
pe(x|Hp) > 0 for all z € X. Let Z be the image of
X underthe transformationz = T'(x). Letp,(z|H,) be
the PDF of z whenx is drawn fromthe PDF p, (x| Hy).
Thus,p,(z|Hy) > 0forall z € Z. Let f,(z) beanyPDF
definedon Z. Thenthefunctiondefinedoby

fo(x) = Dz (XlHO)

= . (T Hy) [=(T(x))

®)

isaPDF definedbn X, thusit hasunitarea. Furthermoe,
if x is drawn from the distribution f,(x) as definedin
(5), thenthe PDF of z will be f,(z). Proof: Let M,(y)
be the joint momenienemting function(MGF) of z. By

definition,

M. (y)

B {er's} =B, {7}

p=(T (x)|Ho)
y'z fz(z)
= Ez|H0{e pz(z|Ho)}
_ y'z fz(z) Z 7
= /Z P el Hy) P+ (71Ho) d
- [
z€Z

fromwhich we concludethatthe PDF of z is f,(z). The
above proof maybe modifiedto showthat f, (x) hasarea
1.

The PDF f,(x) maybethoughtof asa PDF constructed
on /X in suchawaythatz = T'(x) is thesuficientstatistic
(SS)to distinguishf, (x) from p,(x|Hp). By theinvari-
ant propertyof likelihoodratiosfor SSs,if z; = T}(x)
is a SSfor H; vs. Hy and f.(z) — p(z|H;), then
fz(x) = p(x|H; ). Applying this to the problemat hand,
we have the class-specificlassifier

[P(XlHo,j)
p(z;|Ho,;)

Furthermore seethat if for eachy, z; is a SSto distin-

guishH; from Hy ;, andp(z;|H;) — p(z;|H;), (6) be-
comesthe optimal MAP classier(1). This fact provides
thetheoreticabuidefor featureselection.Thatis, look for

featureswhich distinguisha givenclassfrom Hg ;. Or if

T;( ) isfixed,chooseH, ; sothatT}(x) is approximately
sufficientfor distinguishingH; from Hy_ ;. Advantage®f

the class-specifienethodinclude:

M
arg max
i=1

]ﬁ(Zlej) p(H}).  (6)

o ReducedeaturePDFdimension.



e Modulararchitecture.

e The class-specific method relies partially on
p(z;|H;) and partially on p(z;|Hp), which is
known a priori. The denominatothasthe effect of
“assisting”thatclassfor which thedataappearseast
likely underthenull hypothesis.

Note that in equation(6), the PDFs p(x|H, ;) and
p(z;|Hy,;) mustbeaccuratelycomputedavenif datasam-
plesaresignificantlydifferentfrom the Hy ; hypothesis.
Thereforeaccuratdail behaior is essential.

While Hy ; maybedependenbn j, having acommon
null hypothesishas someadwantages. In this case,(6)
becomes 5z | )

Pzj|11;

S P @)
whichis in theform of a setof dedicatedietectos. Hav-
ing adetectoflik e structurehasobviousadvantagesitiow
signal-to-noiseratio (SNR) becauseseparatehresholds
can be seton eachdetectorto reject samplesinsteadof
forcing adecision.

M
arg max
i=1

21 Theory extension: Hidden Markov

Modeling

An M-stateHMM involvesa setof N stateoccurrences
6 = {q[1]...q[N]} wherel < ¢[t] < M. Thesequence

6 is a realizationof the Markov chainwith statepriors
{mj,j =1,2...M} andM x M statetransitionmatrix

A = {a;;}. TheobsenationsX = {x[1],x[2]...x[N]}
arerealizationdrom a setof statePDF’s
p(x|Hj),

whereH; is the conditionthatstatej is true. We assume
theobsenationsareindependenthus

j=1,2...M,

N
p(X|0) = [ p(x[t]| Hypn)-
t=1
The completesetof parameterslefiningthe HMM are

A= [{7"1'}’ {ais}, {p('|Hq[t])}] )

Wherezjj\i1 =1, Zjﬂil a;; = 1. TheBaum-Weélsh
algorithmmaximizesheLF over A [?]. TheLF iswritten

as[?]

pGA) = ) gy P[] Hyp)
0
N
11 @ain - 11qtm D] Hypr)),
n=2

(8)
wherethe summationof @ is over all possiblestatese-
guencef length N. To addresghe dimensionalityis-
sue, mostimplementationgeducethe obsenationsto a
FV Z = {z[1],2[2]...2[N]}, wherez[t] = T(x[t]). In-
steadjf we appy (4) with commonH,,

o pKN .~ [Py H)
LZ:N = yXTH) = % Ty [—mzqm [1][Ho) ]
N
. a ﬁ(zq[n] [n]|Hq[n])
711;[2 [ aln=1ldlnl “pz [n]|H0)_] ’

9)
A variation of the Baum-Welsh algorithm hasbeende-
rivedfor estimationof theparametersf thefeaturePDFs
{p(z;|H;)} by modellingthemasGaussiamixtures[?].
TheresultisanHMM with state-dependef¢atures Be-
causeeachstatecan have a differentFV, it is possible
to use specialprocessingo take advantageof the spe-
cialtemporalor frequeng-domaincharacteof eachstate.
This algorithmhasbeentestedon simulateddataandhas
shav superiomperformanceén comparisorto thestandard
HMM. Partof thisimprovements dueaself-initialization
effect. This effectis dueto the dominantrole of the de-
nominatortermp(z;| Hyp), which is known in adwance.

2.2 Computer Simulation

A computerexperimentdesignedusing syntheticsignals
with known sufiicient statisticswas conductedo verify
(7). Theresultsarepublishedin arecentpaper[?]. The
experimentfeaturedthree syntheticclassesgachwith a
one-dimensionastatistic. The performanceof the class-
specific classifierusing one-dimensionaPDF estimates
was comparedwith the classifier constructedusing the
three-dimensionatommon FV composedof the three
class-specifideatures. Since both classifiersusedthe
samefeatureaandPDFestimatiommethod(Gaussiamix-
tures), the performancecomparisoncomparedonly the
classifierarchitecturesThe classificatiorperformancas



plottedin Figurel andshovsthatmorethanafactorof 10
fewer training samplesarerequiredby the class-specific
classifierfor the samelevel of performance.

Figurel: Comparisorof class-specifiandtraditionalclassifier
shaving probability of correctclassification(P,.) asafunction
of the numberof training samplesfrom eachclass. Eaches-
timate of P.. is an averageof 10 independentrials using500
testingsampledrom eachclassin eachtrial.

3 Applications

3.1 Time-series(Speech) Analysis

The class-specifiapproachlendsitself well to optimal
time-seriessegmentation. Let the length" time-series
be divided into K segmentswith endingtimes =
[t1,t2...tx—1]. Within segmentk, we assumehe data
is arealizationof modelmy,. Let u = [my,ma...mg],

1 < my < M. Determinationof = and u may be for-

mulatedasa maximumlik elihoodproblem.If we assume
thatfor afixed u, T, the K sggmentsareindependent,

p(x|p, 7) H p(altr—1 +1,...,zfts]| Hp,), (10)

wheret, = 0, andtx = T. The maximizationof this
guantitymaybewritten as

%gch(xm,f) = max {mﬁx p(XIN,‘r)} . (1)
Theinnermaximizationmaybe performedndependently
on eachsggment.Then,the problemmay be solvedwith-
out exhaustve searchusing dynamicprogramming. For
eachtime ¢, thetotal log-likelihoodof the bestseggmenta-
tion which endsat time ¢ may be calculatedrecursvely.
Aside from the computationalaspects,the main diffi-
culty of implementing(11) is the necessityto know the
LFs p(x|H;). Thus,they areoftenlimited to onemodel

whose parametersre allowed to changefrom segment
to segment. An exampleis the sggmentationof a DFT
into constant-pwer segments[?]. In contrastthe class-
specificmethodallows likelihood comparisonsf com-
petingmodelswith differentstructurebasednly ontheir
sufficient statisticsvia (4). Let

Tj(z[t], -
Applying (4) with acommonHj,

z;[t1, ta] = -5 2[t2])

p ka 1 + b 17tk]|Hmk)
D(Zm, [1+ te—1,tk]|Ho)

p(x|p, 7)
XlHO

(12)

Below, we explainthe stepsnecessarfor implementation
of (12) and describethe specificchoiceswe have made
relative to the sgmentatiorof speectdata.

1. Selectiorof the Hy hypothesisFor speechit is use-
ful touseN (0, 1) independenGaussiamoise.

. Selectionof sufficient statisticsto differentiateeach
model from Hy. The two main modelsin speech
are unvoiced (H;) andvoiced (H) processesWe
selectedas approximatesufficient statisticsfor H;
the first seven autocorrelatiorfunction (ACF) lags
z; = 1% wherer® = [rq...r¢]. For H, we used
7y = [r8,rp,ip] Wherer,, i, arethe valueandlag
index if the highestACF peakin therangeof human
pitch.

. Determinationof the denominatoPDFsp(z;|Hp).
For asetof unweightedDFT-derived ACF estimates
obtainedrom independenGaussiamoise theexact
joint momentgeneratingunction(MGF) maybede-
termined,however a closedform expressionfor the
joint PDF cannot be found. Throughapplicationof
the saddlepointapproximation or tilted Edgeworth
expansion[?], accuratePDF approximationsvalid
in the distanttails may be obtained[?]. For voiced
speechtheintroductionof thefeaturei, requiresus-
ing the PDFfactorization

= p(r87 Tplirn Hy) p(ileU)a

(13)
wherep(ip|Ho) is approximatedsa uniform distri-
bution.

p(rS, Tp, ileO)



4. Determination of appropriate numerator PDFs
p(z;|H;). ThesePDF may be obtainedby PDF es-
timationusinglabeledtraining data,or may be con-
structedusing prior knowledge. For voiced speech,
the factorization(13) alsoappliesunderH> andwe
assumep(ip|H>) is uniform over the humanpitch
range. Often, it is useful to work with an alter
native feature set with well-behaved statisticsob-
tainedby invertible transformationof z;. For Hy,
we have foundit usefulto work with the alternatve
featureset z} [p, k%], wherep = log(ro), and
kS = [Iﬁl, Cey Iﬁ()'], andli',i = 10g((1—K,)/(1+K,)),
where K;, arethe 6-th orderreflectioncoeficients
(RCs). The PDF p(z;|H1) may be obtainedfrom
p(z}|Hy) using a changeof variablesand the Ja-
cobianof the transformation. We have found that
the componentf z| are approximatelyGaussian
andindependentinderH,. Appropriatemeansand
varianceswere obtainedby observingtypical data.
For H,, we have foundit usefulto work with z),
[p, K, pp,ip], wherex® andp aresimilarly defined
andp, =logry.

An exampleof a sggmentedtiime-seriess shavn in Fig-
ure 2. This examplewas obtainedby fitting voicedand
un-wicedspeechmodelsto the sgments. Good quality
speecthasbeenre-synthesizeffom thefeaturedrom the
segmentsobtainedn this way.

Figure2: Exampleof optimal speectseggmentation.Unvoiced
seggmentsareshovn with finer dottedlines. Spolenwordis ger
man“heut”, pronouncedhoit”. Thelengthof thevoicedspeech
segmentsin thefinal solutionareapproximatelyequalto a mul-
tiple of thepitch period. This providesthebest‘fit” tothemodel
which usedunweightedDFT processing.

3.2 Image Recognition

The class-specifienethodmay also be appliedto image
processing.To realizea benefitby direct applicationof
equation(4), thereshouldexist alow-dimensionaFV for
eachobjectclasswhich is nearlysufficient to distinguish
the givenobjectfrom Hy (Gaussiaror exponentiallydis-
tributed independenhoise on the imageplane). Unfor-
tunately mostobjectrecognitionproblemsareconcerned
with objectswhich aresimilar or sharethe samefeatures.
A betterapproachis to represeneachobjectclassasa
collection of imageprimitives. Theseprimitivescanbe
thenrepresentedy differentFVs. Therecognitionof the
objectclassesanbe accomplishedy statisticallymod-
elling the spatial relationshipsamongthe image primi-
tives. To testthis concepta simplified shape-recognition
experimentwas conducted. Figure 3 shaws the original
cameramagewhich containscircles,squaresanda pen-
tagon.

Figure3: Originalimage(245wide by 242high).

The imageof 245-by-242 pixelswas pre-processeds
follows. The imagedatais definedas {z;;, 1 < i <



N, 1< j < M} Let N(i,j) becircularneighborhood
of 16 pixelsradiusaroundpixel (i,j):

N(i,j) = (n,m) : /(n — )2 + (m

We define u(i,j) and o(i,j) asthe samplemeanand
standarddeviation of the datain neighborhoodV/ (i, 7).
We thendefinethe normalizedneighborhoodiataat pixel

(i,5) as

—4) < 16.

X(i,5) £{&d .} : (n,m) € N(i, j),

where

~ij A Tnm — p(4, )

S ()

Theideais thento test)?(i,j) for eachobjectprimitive
in eachorientation. An exampleof a primitive for a 90-
degreecornercenteredat pixel (¢, j) with an orientation
of ¢;=135degreesis shavn in Figure4. Let therebe L
orientationgwe use5-degreequantizationd. = 72). Let

Figure4: Imageprimitive for a 90-deyreecornercenteredat
pixel (¢, ) with anorientationof ¢=135degrees.

a (X, )| Hm, 1)
p(X(i, )| Ho)

1 <1< L, 1 <m < M, whereM is the num-
berof primitives. This quantityis thelikelihoodratio test
at pixel (i, j) betweerthe hypothesighat primitive m is
presenin orientationg; andhypothesis,. To applythe
class-specificnethod we re-writethis as

Q(lJJilim)

P(Zi,j,0,m|Hm, 01)
p(ziajvlam |H0)

Qi j,1,m) =~

wherez; ;; ., is anapproximatesufficientstatisticfor this

binarytest. NotethatnormalizingX (i, j) makesit easier
to find approximatesufficientstatisticgo distinguishfrom

zero-mearGaussiamoiseof unit variance.

To illustrate the selectionof approximatesuficient
statistics,we considera one-dimensionatxample. Con-
sideralength-V time-seriex = [z1,z5 ... zx]. Lethy-
pothesisH, be definedas

Tp=a;+n;, 1<t<b
Hb:

Ty =az+mn, b>t<N,

wherea,, as aretwo unknowvn constants.We define Hy
asindependentV(0, 1) Gaussiamoise.A goodFV sthe
sumsof thesamplesn thetwo regions:

b N
Z1p = E Tt, Z2p = E Tt
t=1

t=b+1
Thus,we have
p(x|Hy,b)
p(x|Ho)
Under Hy, z1 5 andz, , aremutuallyindependentBoth

are Gaussiarnwith zeromean,while z; ; hasvarianceb,
andz; ; hasvarianceN — b. Clearly,

_ P(Z1,6, 22| H1,b)
" p(2Z1,, 22,5/ Ho)

(14)

log p(21,p, 22,5| Ho) = —0.5log(27b) — %zib

The numeratorPDF in (14) needsto be defined. If we
have no prior knowledgeabouta,, as, we may assume
uniform distributionsor mayignorethe prior distribution
altogetherlt hasbeenexperimentallyverifiedthatthenu-
meratorhasminimal effect on thetest. The classification
decisionmaybemadebasednly onthedenominatoyi.e.
how unlikely thedatais underHy.

To extendthe abose exampleto the 90-degreecorner
primitivein Figure4, we computethesumof thesamples
in regions A and B. We then apply a similar agument
to arrive at a formulafor the joint distribution of the two
region sums.We have createdsimilar modelsfor various
cornerwidths, straightedgesandcurvededges.

Dependingon the application the orientationinforma-
tion may or may not be important. If it is notimportant,



onemay reducethe databy maximizingover the orienta-
tion ¢y:

Ql(i7j7 m) = mlax Q(i7j7l7m)'

An exampleof Q' (, j, m) for m correspondingo the hy-

thetraditionalclassifierbecaus®ptimality of themethod
only requiredeaturevectorsto besuficientto distinguish
the given classfrom a common(null) hypothesis. The
methodis basedon a new theoremwhich permits“pro-

jecting” the featurevectorPDFsbackto the original data
space. The methodis shaving promisein three appli-

pothesisof a 108-deyreecorner(asfoundin a pentagon) cations:HMM modelling, time-seriegspeech)analysis,

is shovn in Figure5. Note thatthe five 108-dgreecor-
nersof the pentagorweredetectedwhile noneof the 90-
degreecornersin the imagewere detected. The image
maybereducedn thiswayto smallareasvhicharelikely
to bethelocationsof the desiredprimitives. Work is con-
tinuingto developstatisticaimodelsto describehespatial
relationshipbetweertheseareas.

Figure5: Imageprocessedo detect108-degree cornersand
thresholdedor display Numeratordensitiesvereignored.

4 Conclusions

A new generaimethodof patternrecognitionis proposed.

This methodallows class-specifideaturevectorsto be
usedin anoptimalclassifiefframewvork. The new method
doesnot suffer from the samedimensionalityissuesas

andimagerecognition.



